INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 9(4):497-509, August, 2014.

Optimized Branch and Bound for Path-wise Test Data
Generation

Y.W. Wang, Y. Xing, Y.Z. Gong, X.Z. Zhang

Ya-Wen Wang (1,2), Ying Xing* (1,3), Yun-Zhan Gong (1), Xu-Zhou Zhang (1)
(1) State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications, Beijing, China

10 Xitucheng Road, Beijing, China

E-mail: wangyawen@bupt.edu.cn, gongyz@bupt.edu.cn, laomao22311@126.com

(2) State Key Laboratory of Computer Architecture

Institute of Computing Technology, Chinese Academy of Sciences

(3) School of Electronic and Information Engineering

Liaoning Technical University

*Corresponding author: lovelyjamie@Qyeah.net

Abstract: The increasing complexity of real-world programs necessitates the au-
tomation of software testing. As a basic problem in software testing, the automation
of path-wise test data generation is especially important, which is in essence a con-
straint satisfaction problem solved by search strategies. In this paper, the search
algorithm branch and bound is introduced and optimized to tackle the problem of
path-wise test data generation. The optimized branching operation is fulfilled by a
dynamic variable ordering algorithm with a heuristic rule to break ties. The optimized
bounding operation is accomplished by analyzing the results of interval arithmetic.
In order to facilitate the search methods, the solution space is represented as state
space. Experimental results prove the effectiveness of the optimized branching and
bounding operations, and show that the proposed method outperformed some other
methods used in test data generation. The results also demonstrate that the proposed
method is applicable in engineering.

Keywords: test data generation, constraint satisfaction problem, branch and bound,
state space search.

1 Introduction

With the surge of increasingly complex real-world software, software testing plays a more and
more important role in the process of software development [1]. In 2002, National Institute of
Standards and Technology (NIST) found that over one third of the cost of software failure could
be eliminated by an improved testing infrastructure [2]. But manual testing is time-consuming
and error-prone, and is even impracticable for real-world programs. So the automation of testing
is of crucial concern [3]. Furthermore, as a basic problem in software testing, path-wise test data
generation (denoted as Q) is of particular importance because many problems in software testing
can be transformed into Q.

The methods of solving Q can be categorized as dynamic and static. The dynamic methods
require the actual execution of the program under test (PUT), and the metaheuristic (MHS) [4]
methods are very popular. Recently, the MHS method particle swarm optimization (PSO) [5]
has become a hot research topic due to its convenient implementation and faster convergence
speed. But dynamic methods often consume a large number of iterations, and the definition of
objective function is also a big problem. The static methods utilize techniques including symbolic
execution [6] and interval arithmetic [7] to analyze the PUT without executing it. The process
of generating test data is definite with relatively less cost. They abstract the constraints to be
satisfied, and propagate and solve these constraints to obtain the test data. Due to their precision
in generating test data and the ability to prove that some paths are infeasible, the static methods

Copyright (© 2006-2014 by CCC Publications

498 Y.W. Wang, Y. Xing, Y.Z. Gong, X.Z. Zhang

have been widely studied by many researchers. Demillo and Offutt [8] proposed a fault-based
technique that used algebraic constraints to describe test data designed to find particular types
of faults. Gotlieb et al. |9] introduced static single assignment into a constraint system and
solved the system. Cadar et al. from Stanford University proposed a symbolic execution tool
named KLEE [10] and employed a variety of constraint solving optimizations. In 2013, Wang et
al. [11] proposed an interval analysis algorithm using forward dataflow analysis. No matter what
techniques are adopted, static methods require a strong constraint solver.

In this paper, considering the drawbacks of the dynamic methods and the demand for static
methods, we propose a new static test data generation method based on Code Test System
(CTS)(http://ctstesting.com), which is a practical tool to test codes written in C programming
language. Our contribution is threefold. First, path-wise test data generation is defined as a con-
straint satisfaction problem (CSP). Two techniques (state space search and branch and bound)
in artificial intelligence are integrated to tackle the CSP. Second, the branching operation is
optimized with a heuristic variable ordering algorithm. Third, the bounding operation is opti-
mized in different stages of the search to reduce the search space greatly. Through experimental
results, we try to evaluate the performance of our method, especially the optimized branching
and bounding operations. We also make comparison experiments to find whether our method
outperforms some currently existing test data generation methods in terms of coverage.

2 Problem definition and solving strategies

2.1 Problem definition

A control flow graph (CFG) for a program P is a directed graph G=(N,E,i,0), where N is
a set of nodes, F is a set of edges, and ¢ and o are respective unique entry and exit nodes
to the graph. Each node n€N is a statement in the program, with each edge e=(nr, n:)€E
representing a transfer of control from node n- to node n:. Nodes corresponding to decision
statements such as if statements are branching nodes. Outgoing edges from these nodes are
referred to as branches. A path through a CFG is a sequence p=(n1, n2, ..., na), such that
for all r, 1<r<g, (nr, nr+1)€E. A path p is regarded as feasible if there exists a program input
for which p is traversed, otherwise p is regarded as infeasible. The problem Q is in essence a
CSP [12]. Xis a set of variables {21, z2,..., an}, D={D1, D2,..., Dn} is a set of domains, and
DieD (1=1,2,...,n) is a finite set of possible values for zi. For each path, D is defined based on
the variables’ acceptable ranges. One solution to the problem is a set of values to instantiate
each variable inside its domain denoted as{zi+ Vi, z2+—Va,. .. 20— Va }.

A CSP is generally solved by search strategies, among which backtracking algorithms are
widely used. In this paper, state space search [13] and the backtracking algorithm branch and
bound (BB) [14] are introduced to solve the CSP. The process of exploring the solution space is
represented as state space search, as introduced in our previous work [15] . This representation
will facilitate the implementation of BB. In classical BB search, nodes are always fully expanded,
that is, for a given leaf node, all child nodes are immediately added to the so called open list.
However, considering that one solution is enough for path-wise test data generation, best-first-
search is our first choice. To find the best, ordering of variables is required for branching to
prune the branches stretching out from unneeded variables. In addition, as the domain of a
variable is a finite set of possible values which may be quite large, bounding is necessary to cut
the unneeded or infeasible solutions. So this paper proposes best-first-search branch and bound
(BFS-BB) to automatically generate the test data, and the branching and bounding operations
have both been optimized.

Optimized Branch and Bound for Path-wise Test Data Generation 499

Table 1: Some methods used in this paper

Name Operation Stage
Dynamic variable oredering (DVO) Branching State space search
Initial domain reduction (IDR) Bounding Initialization
Hill climbing (HC) Branching State space search

2.2 The search strategies

During the search process, variables are divided into three sets: past variables (short for PV,
already instantiated), current variable (now being instantiated), and future variables (short for
FV, not yet instantiated). BFS-BB includes two stages: initialization and state space search.
Some methods in BFS-BB are described in Table 1. BFS-BB is described by pseudo-codes as
follows.

Algorithm 1 BFS-BB
Input p:the path to be traversed
Output result{Variable—Value}:test data making p feasible
1: result<—null
2: path infeasible +true
3: call Algorithm 3. Initial domain reduction
4: if path infeasible = true then
5: return infeasible path
6
8

: call Algorithm 2. Dynamic variable ordering
: Vieselect (D1)
: initial state<—(null, z1, D1, Vi, active)

9: Seur<+—initial state

10: while z:#null do

11: call Algorithm 4. Hill climbing

12: if Seur=(Pre,z:,D:,V:, inactive) then

13: backtrack

14: elseresult<result| J{z:+ Vi}

15: FV«FV-{x:}

16: PV+—PV+{x:}

17: call Algorithm 2. Dynamic variable ordering
18: Vi<select (D:)

19: Seur4—(Pre,z: ,Di, Vi, active)

20: final state <+ Scur
21: return result

The first stage is to perform the initialization operations corresponding to lines 1 to 9. At
first, IDR (Section 3.2.1) is used to partially reduce the input domains of all variables and find
infeasible paths on occasion. All the variables in F'V are permutated by DVO (Section 3.1) to
form a queue and its head z1 is determined the first variable to be instantiated. A value Vi is
selected from the domain of 1 (Di). With all these, the initial state is constructed as (null,
x1, Di, Vi, active), which is also the current state Seur. Then the hill climbing (Section 3.2.2)
process begins for z1. For brevity, our following explanation refers to the hill climbing process
for each z: in F'V.

In the state space search stage as shown by lines 10 to 21 , Hill climbing utilizes interval
arithmetic to judge whether Vi for a: leads to a conflict or not. In summary, the hill climbing
process ends with two possibilities. One is that it finally finds the optima for x; and reaches the
peak of the hill, so the type of Scur is changed into extensive, indicating that the local search for

500 Y.W. Wang, Y. Xing, Y.Z. Gong, X.Z. Zhang

xi ends and DVO for the next variable will begin. The other is that it fails to find the optima for
xi and there is no more search space, so the type of Seur is changed into inactive, indicating that
the local search for x: ends and backtracking is inevitable. BFS-BB ends when the hill climbing
processes for all the variables succeed and there is no more variable to be permutated. All the
ertensive nodes make the solution path.

3 Optimized branching and bounding operations

3.1 optimized branching operation

This part focuses on the branching operation, which concerns the ordering of variables that
determines the next variable to be instantiated. In our method, the next variable to be instan-
tiated is selected to be the one with the minimal remaining domain size (the size of the domain
after removing the values judged infeasible), because this can minimize the size of the overall
search tree. The technique to break ties works when there are often variables with the same
domain size. We use variables’ranks to break ties. In case of a tie, the variable with the higher
rank is selected. This method gives substantially better performance than picking one of the
tying variables at random. Rank is defined as follows.

Definition 1. Assuming that there are k branches along a path, the rank of a branch (nga,
nqa+1) (a€ll, k|) marks its level in the sequence of the branches, denoted as rank(naa, nga+1).

The rank of the first branch is 1, the rank of the second one is 2, and the ranks of those
following can be obtained analogously. The variables appearing on a branch enjoy the same rank
as the branch. The rank of a variable on a branch where it does not appear is supposed to be
infinity. As a variable may appear on more than one branch, it may have different ranks. The
rule to break ties according to the ranks of variables is based on the heuristics from interval
arithmetic that the earlier a variable appears on a path, the greater influence it has on the result
of interval arithmetic along the path. Therefore, if the ordering by rank is taken between a
variable that appears on the branch (nasa, n4.+1) and a variable that does not, then the former
has a higher rank. That is because on the branch (n4a, nga+1), the former has rank a while the
latter has rank infinity. The comparison between a and infinity determines the ordering. The
algorithm is described by pseudo-codes as follows.

Quicksort is utilized when permutating variables according to remaining domain size and
returns @) as the result. If no variables have the same domain size, then DVO returns the head
of @ (zi). But if there are variables whose domain sizes are the same as that of the head of @ ,
then the ordering by rank is under way, which will terminate as soon as different ranks appear.

3.2 Optimized bounding operation

This part focuses on the bounding operation, which in fact is the optimization of interval
arithmetic. For the purpose of improving efficiency, the optimized bounding operation is taken
in both stages of BFS-BB.

Initial domain reduction

The optimized bounding operation taken in the initialization stage is used for initial domain
reduction as well as infeasible path detection. Following is the introduction to the process that
interval arithmetic functions. First we give the definition of branching condition.

Optimized Branch and Bound for Path-wise Test Data Generation 501

Algorithm 2 Dynamic variable ordering
Input F'V:the set of future variables

Di:the domain of zi (€ FV)

(naa, nga+1)(a€[1, k]):k branches along the path
Output mi:the selected variable to be next instantiated

1: Qi+—quicksort(F'V,[D:)

2: for i—1:| Q| do
3
4

if |Di|#|Ds| (j>t:05,0:€0i) then

break
5 else
6 for (nea, nga+i)(a€ll, k]) do
(f if rank(nas, ngat1)(z:)=rank(nee, ngt1)(z;) then
3 a+—+
9 elsepermutate @, 15 by rank(nea, nga+1)
10: break

11: z<head(Q:)
12: return =

Definition 2. Let B be the set of Boolean values {true, false} and D% be the domain of all
variables before the a? branch, if there are k branches along the path, the branching condition
Br(nga, nga+1): D*—=B (a€[l, k|)where nqa is a branching node is calculated by formula (1).

true, Daﬂﬁa#(b;

false, Daﬂf)“:@.)

Br(nga, nga+1) = {

In formula (1), D* satisfies all the a-1 branching conditions ahead and will be used as input for the
calculation of the a'® branching condition, and D*which is a temporary domain is the result when
calculating Br(naa, ngat1) with D® and satisfies the a® branching condition. D*(D®#() means
that Daﬂﬁa satisfies all the a-1 branching conditions ahead and the a!* branching condition,
ensuring that interval arithmetic can continue to calculate the remaining branching conditions,
while Daﬂﬁa:@ means that the path has been detected infeasible. In the initialization stage,
following algorithm can be quite useful for infeasible path detection as well as initial domain
reduction since it is quite clear that D'DD?.. DDFD DL

Algorithm 3 Initial domain reduction

Input D':the input domain of all variables
Output DFtl:the reduced domain of all variables
1. for i—1:k do
Br(naa, ngat1)<—false
D%calculate Br(naa,nga+1)with D*
if D"ND"#) then
Br(naa, nga+1)strue
Da+1<_DamEa
else return
8 path infeasible < false
9: return DFt!

If the path is not infeasible, then D**! will be input as the domain of all variables for the
state space search stage. If it is, because interval arithmetic analyzes the ranges of variables in

502 Y.W. Wang, Y. Xing, Y.Z. Gong, X.Z. Zhang

a conservative way, the path to be covered is no doubt infeasible, and it is unnecessary to carry
out the following state space search.

Hill climbing

Hill climbing is used to judge whether a fixed value Vi for the current variable z: makes path
p feasible. In other words, a certain Vi that makes p feasible is the peak that we are trying to
search for x:. Initial value is very important for hill climbing. Our initial value selection strategy
was introduced thoroughly in [16], which is quite effective. This part focuses on the process that
interval arithmetic judges whether the value (Vi) assigned to a variable (z:) leads to a conflict or
not. Different from the initialization stage, a conflict detected in state space search stage implies
that the current Vi for xi will not lead the search in the right direction, but another Vi may not.
So what we are trying to find in this conflict is the information useful for the next search step.
To be exact, we seek to find some information to help reduce the domain of the current variable
zi (D:i). In accordance with the model of state space search, we give the following formula of the
objective function F(V:), which is used to reduce the current domain of D;.

k
F(Vi) = Vi =Y (D" D)(xs) (2)
a=1

The reduction of D: is carried out according to the result of the objective function, a new
Vi is selected from the reduced domain D:, and interval arithmetic will restart to judge whether
Vi causes a conflict. The above procedure is likened to climbing a hill. F'(Vi)=0 implies that
there is no conflict detected and Vi is the value judged to be appropriate for x:. Otherwise D:
will again have to be reduced according to the return value of F(Vi). In the procedure of hill
climbing, the absolute value of F/(V:) will approximate more closely to 0, which is the objective
or the peak of the hill. The algorithm is shown by following pseudo-codes.

It can be seen that F'(Vi) provides both the upper and the lower bounds of D: for its reduction,
so the efficiency of the algorithm is improved greatly. After the conduction of Algorithm 4, the
hill climbing for a variable(zi) ends with two possibilities, which can be identified by Type of
Seur: extensive means that the peak is found and DVO for the next variable may continue, while
inactive means that no search space is left for z:, the peak is not found, and backtracking is
inevitable.

3.3 Case study

In this part, we give a case study to explain in detail how BFS-BB works. An example with
a program test and its corresponding CFG is shown in Figure 1. Adopting statement coverage,
there is only one path to be traversed, namely, Pathl: 0—1—2—3—4—5—6—7—8—9—10. We
choose this example, because the constraints along the path are very strict for two variables. It
is very obvious that {21+—65,22+35} is only one solution to the corresponding CSP.

For simplicity, the input domains of both variables are set [1, 100] with the size 100. Then
IDR reduces them to z1:[31,99],22:[1,69] as shown in Figure 2, which is used as input for the
state space search stage. Then DVO works to determine the first variable to be instantiated as
Table 2 shows, and z1 is picked out as shown in bold in the last column.

The initial value of z1 is selected from [31, 99| according to the method introduced in [16].
Assume that 80 is selected, then after three times of conflict and reduction to D:, 65 is found for
x at last. F(65)=0 means that 65 is the peak of the hill that corresponding to z1, which starts
from 80. The hill climbing process is shown in Table 3. And since there is only one value 35 for
z2, the search succeeds with {z1+—65,72—35} .

Optimized Branch and Bound for Path-wise Test Data Generation

503

Algorithm 4 Hill climbing

Input D:: the domain of
V:i: the current value of z:

Output Seuwr:(Pre,az:,D:, Vi, inactive)when hill climbing succeeds

Seur:(Pre,x:,D: | Vi, extensive)when hill climbing fails

1: while |D;|>1 do

2: for i—1:k do

3: Br(nga, nga+1)< false

4: D%—calculate Br(nge,nges1)with D?
5: if D°N\D°#0 then

6: Br(nga, Nga+1)<—true

7: D+l prODe

8: else calculate F(Vi)

0: break

10: if F(Vi) =0 then

11: Seur<—(Pre,x:,D;, V;, extensive)
12: return Seur

13: else

14: if F(V:) < 0 then

15: Di—[Vit1,Vi+F(V3)]

16: elseDi+[Vi-F(Vi), Vi-1]

17: Vi<—select(D:)

18: Seur¢—(Pre,x:,D:,V:, inactive)
19: return Seur

void test(int x1, int x2){

T

2: if(x1+x2==100) La]

1: if(x1>x2)

3: if(x1>=20)

4: if(x1-x2==30)

5. printf("Solved! ");
3

Figure 1: Program test and its corresponding CFG

504 Y.W. Wang, Y. Xing, Y.Z. Gong, X.Z. Zhang

Table 2: DVO process for z1 and z2
Ordering rule Condition of each variable Tie encountered? Ordering result

Domain size |D1]=69, |D2|-=69 Yes
Rank1 Rankl(z1)=1, Rankl(z2)=1 Yes 1oz
Rank2 Rank1(z1)=2, Rankl(22)=2 Yes rLo
Rank?2 Rank2(z1)= 3, Rank2(z2)=00 No

D'={xL:[1,100] ;x2:[1,100]}

~—D'={x1:[2,100] ;:x2:[1,99]}

D2={x1[1,100]N[2,100]=[2,100] ;x2:[1,100]N[1,99]=[1,99]}
x14+x2=100 |«—D2={x1:[100,100]-{1,99]=[1,99] ;:x2:[100,100]-[2,100]=[0,98]}
D3={x1:[2,100]N[1,99]=[2,99] ;x2:[1,99]N[0,98]=[1,98]}

~—D3={x1:[20,98]}
DA={x1:[2,99]N[20,98]=[20,98] :x2:[1,98]}

~—D4={xI:[1,98]+[30,30]=[31,128] :x2:[20,99]-[30,30]=[-10,69]}

D5={x1:[20,99]N[31,128]=[31,99] :x2:[1,98]N[-10,69]=[L 69T}

Figure 2: The IDR process

4 Experimental Analyses and Empirical Evaluations

To observe the effectiveness of BFS-BB, we carried out a large number of experiments in
CTS. Within the CTS framework, the PUT is automatically analyzed, and its basic information
is abstracted to generate its CFG. According to the specified coverage criteria, the paths to be
traversed are generated and provided for BFS-BB as input. The experiments were performed in
the environment of MS Windows 7 with 32-bits, Pentium 4 with 2.8 GHz and 2 GB memory.
The algorithms were implemented in Java and run on the platform of eclipse.

4.1 Performance evaluation

The number of variables is an important factor that affects the performance of test data
generation methods [17]. Hence, in this part, experiments were carried out to evaluate the
effectiveness of the optimized branching and bounding operations for varying numbers of input
variables.

Testing the optimized branching operation

This part presents the comparison between our branching algorithm DVO (A) which is also
BFS-BB and the method which orders variables only by remaining domain sizes (B). The other
operations (the bounding operations) in the two methods were both accomplished by IDR and
HC. The comparison was accomplished by repeatedly running the two methods on generated
test programs having input variables zi, z2,..., z» where n varied from 2 to 50. Adopting
statement coverage, in each test the program contained n if statements (equivalent to n branching
conditions or n expressions along the path) and there was only one path to be traversed of fixed
length, which was the one consisting of entirely true branches. In each test, the expression of

Optimized Branch and Bound for Path-wise Test Data Generation 505

Table 3: The hill climbing process for z1
D Vi F(Vi) |F(V:)| Peak reached?

[31,99] 80 30 30 No
[50,79] 60 -10 10 No
[61,70] 65 0 0 Yes

the it" (1<i<n) if statement was in the form of
[a1, az, ..., an][z1,22,. .., 20]lrel — 0p const[i] (3)

In formula(3), a1, a2,..., a were randomly generated numbers either positive or negative,
rel-ope{>,>,<,<,=,#}, and const|j| (j€|1, ¢]) was an array of randomly generated constants
within [0, 1000]. The randomly generated a; and const|i] should be selected to make the path
feasible. This arrangement constructed the tightest linear relation between the variables. The
programs for various values of n ranging from 2 to 50 were each tested 50 times, and the average
time required to generate the data for each test was recorded. The results are presented in Figure
3.

12000 8000
=4.7647x%- 120.53x + 699.01

7000 | ¥
g 10000 g R2=0.9796
= S 6000
c c
G 8000 5]
£ = 5000
© A O
2 6000 Y 4000
unJn ——B gc.ln

3000
¥ 4000)
] 2 2000
£ 000 £
< << 1000

0 Y 0 __
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of variables Number of variables
(a) (b)

Figure 3: Test result of DVO

In Figure 3, (a) shows that A had a better performance than B, but it was not very obvious
when the number of variables (expressions) was not very large, because there was no requirement
for an optimized ordering algorithm, since remaining domain size was enough to determine the
next variable to be instantiated. So the more variables, the better DVO works. For BFS-BB
(A), it is clear that the relation between average generation time and the number of variables
can be represented as a quadratic curve very well as shown in (b) and the quadratic correlation
relationship is significant at 95% confidence level with p-value far less than 0.05. Besides, average
generation time increases at a uniformly accelerative speed as the increase of the number of
variables. The differentiation of average generation time indicates that its increase rate rises by
y=9.52942-120.53 as the number of variables increases. We can roughly draw the conclusion that
generation time using DVO is very close for n ranging from 1 to 25, while it begins to increase
when n is larger than 25. So DVO will be very useful for PUTs with more variables, especially
the large-scale real-world programs.

Testing the optimized bounding operation

This part presents the comparison between our bounding algorithm HC (A) which is also
BFS-BB and the method without HC (B). The other operations (DVO and IDR) in the two

506 Y.W. Wang, Y. Xing, Y.Z. Gong, X.Z. Zhang

methods were totally the same. The comparison was accomplished by repeatedly running the
two methods on generated test programs having input variables xi, 22,..., 2» where n varied
from 1 to 50. Adopting statement coverage, in each test the program contained 50 if statements
(equivalent to 50 branching conditions or 50 expressions along the path) and there was only one
path to be traversed of fixed length, which was the one consisting of entirely true branches. The
expression of each if statement was in the form of

[a1, a2, ..., an][z1, 22, ..., 2n]trel — op const|c] (4)

In formula(4), a1, az2,..., ai were randomly generated numbers either positive or negative,
rel-ope{>,>,<,<,=,#}, and const|c| (c€[1, 50]) was an array of randomly generated constants
within |0, 1000]. The randomly generated a; (1<i<n) and const|c| should be selected to make the
path feasible. This arrangement constructed the tightest linear relation between the variables.
In addition, we ensured that there was at least one “=" in each program to test the equation
solving capability of the methods. The programs for various values of n ranging from 1 to 50
were each tested 50 times, and the average time required to generate the data for each test was
recorded. The comparison result is presented in Figure 4.

10000 F 1400
¥ =0.53x2- 8.6817x + 44.06

1200 R?=0.9784
1000 |

1000
100

=]
=
o

(=)
=
(=

10 | —AB

Average generation time
b3
Average generation time
I
(=)
(=]

]
=
=

?

0.1

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Number of variables Number of variables
(a) (b)

Figure 4: Test result of HC

We exponentiated the axis representing average generation time as shown in (a). It can be
seen that the average generation time of A is far less than B. For BFS-BB (A), it is clear that the
relation between average generation time and the number of variables can be represented as a
quadratic curve very well as shown in (b) and the quadratic correlation relationship is significant
at 95% confidence level with p-value far less than 0.05. Besides, average generation time increases
at a uniformly accelerative speed as the increase of the number of variables. The differentiation
of average generation time indicates that its increase rate rises by y=1.062-8.6817 as the number
of variables increases. We can roughly draw the conclusion that generation time using HC is
very close for n ranging from 1 to 8, while it begins to increase when n is larger than 8.

4.2 Coverage evaluation

To evaluate the capability of BFS-BB to generate test data in terms of coverage, we used
some real-world programs to compare BFS-BB with both static and dynamic methods adopted
in test data generation.

Comparison with a static method

This part presents the results from an empirical comparison of BFS-BB with the static method
[11] (denoted as "method 1" to avoid verbose description), which was implemented in CT'S prior

Optimized Branch and Bound for Path-wise Test Data Generation 507

Table 4: The details of comparison with method 1
Project program Function AC by method 1 AC by BFS-BB

lib sin.c radian 55% 100%
an floor.c ceil 66% 100%
. asinl.c acosl 55% 100%
dell8i-2 tanl.c cotl 66% 100%
Table 5: Parameter setting for PSO
Parameter Value
Population size 30
Max generations 100

Ranging from 0.2 to 1
c1=c2=2
Set according to the input space of the tested program

Inertia weight w
Acceleration constants ciand c2
Maximum velocity Vimaz

to BFS-BB. The test beds were from two engineering projects at http://www.moshier.net/.
The comparison adopted statement coverage as the adequacy criterion. For each test bed, the
experiments were carried out 100 times, and average coverage (AC) was used for comparison.
The details of the comparison are shown in Table 4. From Table 4, it can be seen that BFS-BB
reached higher coverage than method 1 for all the test beds as shown in bold. That is largely
due to the optimization methods utilized in BFS-BB. The applicability in engineering remains
one of our primary goals in the future.

Comparison with PSO

This part presents results from an empirical comparison of BFS-BB with PSO, which is
mentioned in Section 1 as a popular MHS method with relatively fast convergence speed. Table 5
is a brief introduction to some parameters used in PSO. We used three real-world programs, which
are well-known benchmark programs and have been widely adopted by other researchers [18]-
[20]. Branch coverage was taken as the adequacy criterion. For each test bed, the experiments
were carried out 100 times, and AC was used for comparison. Table 6 shows the details of the
test beds and the comparison results. Obviously BFS-BB achieved 100% coverage as shown in
bold on all the three benchmark programs, which are rather simple programs for BFS-BB, and
it outperformed the algorithm in comparison. The better performance of BFS-BB is due to two
factors. The first is that the initial values of variables are selected by heuristics on the path, so
BFS-BB reaches a relatively high coverage for the first round of the search. The second is that
the optimized bounding operation is conducted not only in the state space search stage but in
the initialization stage as well, which reduces the domains of the variables to ensure a relatively
small search space that follows.

Table 6: The details of comparison with PSO
Program LOC Branches Variables AC by PSO AC by BFS-BB

triangleType 31 3) 99.88% 100%
cal 53 18 5 96.85% 100%
calDay 72 11 3 97.35% 100%

508 Y.W. Wang, Y. Xing, Y.Z. Gong, X.Z. Zhang

5 Conclusions and Future Works

The increasing demand of testing large-scale real-world programs makes the automation of
the testing process necessary. In this paper, path-wise test data generation (Q) which is a
basic problem in software testing is defined as a constraint satisfaction problem (CSP), and the
algorithm best-first-search branch and bound (BFS-BB) is presented to solve it, combining two
techniques in artificial intelligence which are state space search and branch and bound (BB).
The branching and bounding operations in BFS-BB are both optimized. For the branching
operation, dynamic variable ordering (DVO) is proposed to permutate variables with a heuristic
rule to break ties. The bounding operation is optimized in both stages of BFFS-BB. Initial domain
reduction (IDR) functions in the initialization stage to reduce the search space as well as detect
infeasible paths. In the state space search stage, the process of determining a fixed value for
a specified variable resembles climbing a hill, the peak of which is the value judged by interval
arithmetic that does not cause a conflict. To facilitate the search procedure, the solution space is
represented as state space. Empirical experiments show that the optimized branching operation
is especially useful for large-scale programs, while the advantage of the optimized bounding
operation hill climbing (HC) is very obvious. The results also show that BFS-BB outperforms
some current static and dynamic methods in terms of coverage. Our future research will involve
how to generate test data to reach high coverage. The effectiveness of the generation approach
continues to be our primary work.

Acknowledgment

This work was supported by the National Grand Fundamental Research 863 Program of
China (No. 2012AA011201), the National Natural Science Foundation of China (No. 61202080),
the Major Program of the National Natural Science Foundation of China (No. 91318301), and
the Open Funding of State Key Laboratory of Computer Architecture (No. CARCH201201).

Bibliography

[1] Michael R. Lyu; Sampath Rangarajan; Ada P. A. van Moorse. (2002); Optimal allocation
of test resources for software reliability growth modeling in software development, IFEE
Transactions on Reliability, ISSN 1841-9836, 51(2): 183-192.

[2] Tassey Gregory.(2002);The economic impacts of inadequate infrastructure for software test-
ing, National Institute of Standards and Technology, RTI Project 7007.011.

[3] Weyuker Elaine J.(1999); Evaluation techniques for improving the quality of very large soft-
ware systems in a cost-effective way, Journal of Systems and Software, ISSN 0164-1212, 47(2):
97-103.

[4] Shaukat Ali, Lionel C. Briand; Hadi Hemmati; Rajwinder K. Panesar-Walawege. (2010); A
systematic review of the application and empirical investigation of search-based test case
generation, IEEE Transactions on Software Engineering, ISSN 0098-5589, 36(6): 742-762.

[5] Mao Chengying; Yu Xinxin; Chen Jifu.(2012); Swarm Intelligence-Based Test Data Genera-
tion for Structural Testing, Proceedings of 11th International Conference on Computer and
Information Science (ICIS 12),623-628.

[6] Suzette Person; Guowei Yang; Neha Rungta; Sarfraz Khurshid. (2012); Directed incremental
symbolic execution, IJACM SIGPLAN Notices, ISSN 0362-1340, 46(6): 504-515.

Optimized Branch and Bound for Path-wise Test Data Generation 509

[7] Moore Ramon Edgar; R. Baker Kearfott; Michael J. Cloud.(2009);Introduction to interval
analysis, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

[8] Richard A. DeMillo; A. Jefferson Offutt. (1991); Constraint-based automatic test data gen-
eration, IEEE Transactions on Software Engineering, ISSN 0098-5589, 17(9): 900-910.

[9] Arnaud Gotlieb; Bernard Botella; Michel Rueher.(1998); Automatic test data generation using
constraint solving techniques, Proceedings of the 1998 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, 23(2):53-62.

[10] Cristian Cadar; Daniel Dunbar; Dawson Engler.(2008);KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs, Proceedings of USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2008), 209-224.

[11] Wang Yawen; Gong Yunzhan; Xiao Qing. (2013); A Method of Test Case Generation Based
on Necessary Interval Set, Journal of Computer-Aided Design & Computer Graphics, ISSN
1003-9775, 25(4): 550-556.

[12] A.E. Eiben; Zs Ruttkay.(1997); Constraint satisfaction problems, pp. C5.7:1-8, New York,
NY, USA: IOP Publishing Ltd and Oxford University Press.

[13] Ling-Ling Wang; Wen-Hsiang Tsai. (1988); Optimal assignment of task modules with prece-
dence for distributed processing by graph matching and state-space search, BIT Numerical
Mathematics, ISSN 0003-3835, 28(1): 54-68.

[14] Lianbo Gao; Shashi K. Mishra; Jianming Shi. (2012); An extension of branch-and-bound
algorithm for solving sum-of-nonlinear-ratios problem, Optimization Letters, ISSN 1862-4472,
6(2): 221-230.

[15] Ying Xing; Junfei Huang; Yunzhan Gong; Yawen Wang; Xuzhou Zhang. (2014); An Intelli-
gent Method Based on State Space Search for Automatic Test Case Generation, Journal of
Software, ISSN 1796-217X, 9(2): 358-364.

[16] Ying Xing; Junfei Huang; Yunzhan Gong; Yawen Wang; Xuzhou Zhang. (2014); Path-wise
Test Data Generation Based on Heuristic Look-ahead Methods, Mathematical Problems in
Engineering, ISSN 1024-123X,volume 2014, Article ID 642630.

[17] Matthew J Gallagher; V. Lakshmi Narasimhan. (2012); Adtest: A test data generation
suite for Ada software systems, IEFE Transactions on Software Engineering, ISSN 0098-
5589, 23(8): 473-484.

[18] Mao Chengying; Yu Xinxin; Chen Jifu.(2012); Generating Test case for Structural Testing
Based on Ant Colony Optimization, Proceedings of the 12th International Conference on
Quality Software (QSIC12), 98-101.

[19] Ammann Paul; Jeff Offutt.(2008); Introduction to Software Testing, Cambridge University
Press, New York, NY, USA.

[20] E. Alba; F. Chicano. (2008); Observation in Using Parallel and Sequential Evolutionary
Algorithms for Automatic Software Testing, Computers € Operators Research, ISSN 0305-
0548, 35(10): 3161-3183.

