Non-Negative Factorization for Clustering of Microarray Data

Authors

  • Lucian Morgos University of Oradea Dept. of Electronics and Telecommunications Faculty of Electrical Engineering and Information Technology

Keywords:

computational intelligence, microarray data analysis, clustering, recognition

Abstract

Typically, gene expression data are formed by thousands of genes associated to tens or hundreds of samples. Gene expression data comprise relevant (discriminant)
information as well as irrelevant information often interpreted as noise. The irrelevant information usually affects the efficiency of discovering and grouping meaningful latent information correlated to biological significance, process closely related to data clustering. Class discovery through clustering may help in identifying latent features that reflect molecular signatures, ultimately leading to class forming. One solution for improving the class discovery efficiency is provided by data dimensionality reduction, where data is decomposed into lower dimensional factors, so that those factors approximate original data.

References

Alter, O. et al.; Singular value decomposition for genome-wide expression data processing and modeling, Proc. Nat. Acad. Sci. USA, 97: 10101-10106, 2000. http://dx.doi.org/10.1073/pnas.97.18.10101

Liu L. et al; Robust singular value decomposition of microarray data, Proc. Nat. Acad. Sci. USA, 100: 13167-13172, 2003. http://dx.doi.org/10.1073/pnas.1733249100

Wall, M.E. et al; SVDMAN singular value decomposition analysis of microarray data, Bioinformatics, 17: 566-568, 2001. http://dx.doi.org/10.1093/bioinformatics/17.6.566

Kluger, Y. et al; Spectral biclustering of microarray data: Coclustering genes and conditions, Genome Research, 13: 703-716, 2003. http://dx.doi.org/10.1101/gr.648603

Lee, D.D.; and Seung, H.S.; Learning the parts of the objects by non-negative matrix factorization, Nature, 401: 788-791, 1999. http://dx.doi.org/10.1038/44565

Brunet, J.P. et al; Metagenes and molecular pattern discovery using matrix factorization, Proc. Nat. Acad. Sci. USA, 101: 4164-4169, 2004. http://dx.doi.org/10.1073/pnas.0308531101

Kim, H.; and Park, H. (2007); Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis, Bioinformatics, 23: 1495-1502, 2007. http://dx.doi.org/10.1093/bioinformatics/btm134

Li, S.Z. et al; Learning spatially localized, parts-based representation, Proc. Int. Conf. Computer Vision and Pattern Recognition, 207-212, 2001.

Buciu, I. et al; Non-negative matrix factorization in polynomial feature space, IEEE Trans. on Neural Nerworks, 19: 1090-1100, 2008. http://dx.doi.org/10.1109/TNN.2008.2000162

Buciu, I., Non-negative Matrix Factorization, A New Tool for Feature Extraction: Theory and Applications, Int J Comput Commun, ISSN 1841-9836, Vol. 3, Supplement: Suppl. S, 3(S): 67-74, 2008.

Golub, T.R. et al; Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science, 286:531-537, 1999. http://dx.doi.org/10.1126/science.286.5439.531

Pomeroy, S. L. et al; Prediction of central nervous system embryonal tumour outcome based on gene expression, Nature, 415:436-442, 2002. http://dx.doi.org/10.1038/415436a

Alon, U. et al; Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays, Proc. Nat. Acad. Sci. USA, 96: 6745-6750, 1999. http://dx.doi.org/10.1073/pnas.96.12.6745

Shipp, M.A. et al; Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine learning, Nature Medicine, 8: 68-74, 2002. http://dx.doi.org/10.1038/nm0102-68

Khan, J. et al; Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, 7: 673-679, 2001. http://dx.doi.org/10.1038/89044

Singh, D. et al; Gene expression correlates of clinical prostate cancer behavior, Cancer Cell, 1: 203-209, 2002. http://dx.doi.org/10.1016/S1535-6108(02)00030-2

Yang, K. et al; A stable gene selection in microarray data analysis, BMC Bioinformatics, 7: 228, 2006. http://dx.doi.org/10.1186/1471-2105-7-228

Published

2014-01-03

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.