Improving the Efficiency of Image Clustering using Modified Non Euclidean Distance Measures in Data Mining

santhi P, V.Murali Bhaskaran


The Image is very important for the real world to transfer the messages from any source to destination. So, these images are converted in to useful information using data mining techniques. In existing all the research papers using kmeans and fuzzy k means with euclidean distance for image clustering. Here, each cluster needs its own centric for cluster calculation and the euclidean distance calculate the distance between the points. In clustering this process of distance calculation did not give efficient result. For make this in to efficient, this research paper proposes the non Euclidean distance measures for distance calculation. Here, the logical points are used to find the cluster. The result shows that image clustering based on the modified non Euclidean distance and the performance shows the efficiency of non euclidean distance


Data Mining, Image Mining, Kmeans, Fuzzy Kmeans, Euclidean Distance

Full Text:



Nor Ashidi Mat Isa; Samy Salamah, A, Umi Kalthum Ngah; Adaptive Fuzzy Moving Kmeans Clustering Algorithm for Image Segmentation, IEEE Trans on Knowledge and Data Engineering, 2145-2153, 2009.

Siti Noraini Sulaiman; Nor Ashidi Mat Isa; Adaptive Fuzzy-K-means Clustering Algorithm for Image Segmentation, IEEE Trans on Knowledge and Data Engineering, 2661-2668, 2010.

Maduri, A.Tayal;Raghuwanesh,M.M.; Review on various Clustering Methods for Image Data, J. of Emerging Trends in Computing and Information Sciences, 34-38, 2010.

Keh-Shih Chuang; Hong-Long Tzeng; Sharon Chen; Jay wu; Tzong-Jer Chen; Fuzzy c-Means Clustering with spatial information for image segmentation,Elseiver, 9-15, 2006.

Sneha Silvia, A.; Vamsidhar, Y.; Sudhakar,G.; Color Image Clustering using K-Means,IJCST, 11-13, 2011.

Vasuda, P.; Satheesh, S.; Improved Fuzzy C-Means Algorithm for MR Brain Image Segmentation, IJCSE, 1713-1715, 2010.

Fahim, A.M.; Saake, G.; Salem, A.M.; Torkey, F.A.; K-Means for Spherical Clusters with Large Variance in Sizes, World Academy of Science, Engineering and Technology, 177-182, 2008.

John Peter, S.; Minimum Spanning Tree-based Structural Similarity Clustering for Image Mining with Local Region Outliers,Int. J. of Computer Applications, 33-40, 2010.

Chawan, P.M.; Saurabh Bhonde,R.; Shirish Patil; Concentric Circle-Based Image Signature for Near-Duplicate Detection in Large Databases,Electronics and telecommunication Research Institute, 2010.


Copyright (c) 2017 santhi P, V.Murali Bhaskaran

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

IJCCC is an Open Access Journal : CC-BY-NC.

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]

INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.


 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2);

SCImago Journal & Country Rank

Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.