HABCSm: A Hamming Based t-way Strategy based on Hybrid Artificial Bee Colony for Variable Strength Test Sets Generation

  • Ammar Kareem Alazzawi
  • Helmi Md Rais
  • Shuib Basri
  • Yazan A. Alsariera
  • Luiz Fernando Capretz
  • Abdullahi Abubakar Imam
  • Abdullateef Oluwagbemiga Balogun


Search-based software engineering that involves the deployment of meta-heuristics in applicable software processes has been gaining wide attention. Recently, researchers have been advocating the adoption of meta-heuristic algorithms for t-way testing strategies (where t points the interaction strength among parameters). Although helpful, no single meta-heuristic based t-way strategy can claim dominance over its counterparts. For this reason, the hybridization of meta-heuristic algorithms can help to ascertain the search capabilities of each by compensating for the limitations of one algorithm with the strength of others. Consequently, a new meta-heuristic based t-way strategy called Hybrid Artificial Bee Colony (HABCSm) strategy, based on merging the advantages of the Artificial Bee Colony (ABC) algorithm with the advantages of a Particle Swarm Optimization (PSO) algorithm is proposed in this paper. HABCSm is the first t-way strategy to adopt Hybrid Artificial Bee Colony (HABC) algorithm with Hamming distance as its core method for generating a final test set and the first to adopt the Hamming distance as the final selection criterion for enhancing the exploration of new solutions. The experimental results demonstrate that HABCSm provides superior competitive performance over its counterparts. Therefore, this finding contributes to the field of software testing by minimizing the number of test cases required for test execution.

Author Biography

Ammar Kareem Alazzawi
Universiti Teknologi PETRONAS


[1] Cohen, M.B. (2004). Designing test suites for software interactions testing, AUCKLAND UNIV (NEW ZEALAND).

[2] Esfandyari, S.; Rafe, V. (2018). A tuned version of genetic algorithm for efficient test suite generation in interactive t-way testing strategy, Information and Software Technology, 94, 165- 185, 2018.

[3] Khan, S.U.R; Lee, S.P.; Ahmad, R.W.; Akhunzada, A.; Chang, V. (2016). A survey on Test Suite Reduction frameworks and tools, International Journal of Information Management, 36

(6), 963-975, 2016.

[4] Zamli, K.Z; Din, F.; Kendall, G.; Ahmed, B.S. (2017). An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t-way test suite generation, Information Sciences, 399, 121-153, 2017.

[5] Zamli, K.Z; Din, F.; Baharom, S.; Ahmed, B.S. (2017). Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites, Engineering Applications of Artificial Intelligence, 59, 35-50, 2017.

[6] Mandl, R. (1985). Orthogonal Latin squares: an application of experiment design to compiler testing, Communications of the ACM, 28 (10), 1054-1058, 1985.

[7] Cohen, M.B; Dwyer, M.B; Shi, J. (2007). Interaction testing of highly-configurable systems in the presence of constraints, Proceedings of the 2007 international symposium on Software testing and analysis, 129-139, 2007.

[8] Alsariera, Y.A; Nasser, A.; Zamli, K. (2016). Benchmarking of Bat-inspired interaction testing strategy, International Journal of Computer Science and Information Engineering (IJCSIE), 7, 2016

[9] Alsariera, Y.A; Ahmed, H.A.S; Alamri, H.S and Majid, M.A; Zamli, K. (2018). A bat-inspired testing strategy for generating constraints pairwise test suite, Advanced Science Letters, 24 (10), 7245-7250, 2018.

[10] Alsariera, Y.A; Zamli, K. (2015). A bat-inspired strategy for t-way interaction testing, Advanced Science Letters, 21 (7), 2281-2284, 2015.

[11] Alsariera, Y.A; Majid, M.A; Zamli, K. (2015). Adopting the bat-inspired algorithm for interaction testing, The 8th edition of annual conference for software testing, 14, 2015.

[12] Alsariera, Y.A; Majid, M.A; Zamli, K. (2015). SPLBA: An interaction strategy for testing software product lines using the Bat-inspired algorithm, 4th International Conference on Software Engineering and Computer Systems (ICSECS), 148-153, 2015.

[13] Alsariera, Y.A; Majid, M.A; Zamli, K. (2015). A bat-inspired Strategy for Pairwise Testing, ARPN Journal of Engineering and Applied Sciences, 10, 2015.

[14] Alazzawi, A.K.; Rais, Helmi, Md.; Basri, S. (2018). Artificial bee colony algorithm for t-way test suite generation, 4th International Conference on Computer and Information Sciences (ICCOINS), 1-6, 2018.

[15] Alazzawi, A.K.; Homaid, A.B.; Alomoush, A.; Alsewari, A. (2017). Artificial bee colony algorithm for pairwise test generatio, Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9, 103-108, 2017.

[16] Alsewari, A.; Alazzawi, A.K.; Rassem, T.H.; Kabir, M.N.; Homaid, A.B.; Alsariera, Y.A.; Tairan, N.M.; Zamli, K. (2017). ABC algorithm for combinatorial testing problem, Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9, 85-88, 2017.

[17] Alazzawi, A.K.; Rais, Helmi, Md.; Basri, S. (2019). ABCVS: An artificial bee colony for generating variable T-Way test sets, Int. J. Adv. Comput. Sci. Appl., 10 (4), 259-274, 2019.

[18] Homaid, A.B.; Alsewari, A.; Alazzawi, A.K.; Zamli, K. (2018). A kidney algorithm for pairwise test suite generation, Advanced Science Letters, 24 (10), 7284-7289, 2018.

[19] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization, Erciyes university, engineering faculty, computer.

[20] Karaboga, D.; Gorkemli, B. (2019). Solving traveling salesman problem by using combinatorial artificial bee colony algorithms, International Journal on Artificial Intelligence Tools, 28 (01), 1950004, 2019.

[21] Arslan, S.; Ozturk, C. (2019). Artificial bee colony programming descriptor for multi-class texture classification, Applied Sciences, 9 (9), 1930, 2019.

[22] Gergin, Z.; NĂ¼khet T.; Sakir E. (2019). Clustering approach using artificial bee colony algorithm for healthcare waste disposal facility location problem, International Journal of Operations Research and Information Systems (IJORIS), 10 (1), 56-75, 2019.

[23] Xie, F.; Li, F.; Lei, C.; Yang, J.; Zhang, Y. (2019). Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification, Applied Soft Computing, 75, 428-440, 2019.

[24] Akbari, R.; Mohammadi, A.; Ziarati, K. (2010). A novel bee swarm optimization algorithm for numerical function optimization, Communications in Nonlinear Science and Numerical Simulation, 15 (10), 3142-3155, 2010.

[25] Zhu, G.; Kwong, S. (2010). Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied mathematics and computation, 217 (7), 3166-3173, 2010.

[26] Kefayat, M.; Ara, L.; Niaki, S.N. (2015). A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources, Energy Conversion and Management, 92, 149-161, 2015.

[27] Cohen, M.B.; Colbourn, C.J.; Ling, A.H. (2008). Constructing strength three covering arrays with augmented annealing, Discrete Mathematics, 308 (13), 2709-2722, 2008.

[28] Cohen, M.B.; Gibbons, P.B.; Mugridge, W.B.; Colbourn, C.J. (2003). Constructing test suites for interaction testing, 25th International Conference on Software Engineering, 38-48, 2003.

[29] Hedayat, A.S.; Sloane, N.J.A.; Stufken, J. (2012). Orthogonal arrays: theory and applications, Springer Science & Business Media, 2012.

[30] Nie, C.; Leung, H. (2011). A survey of combinatorial testing, ACM Computing Surveys (CSUR), 43 (2), 1-29, 2011.

[31] Cohen, M.B.; Gibbons, P.B.; Mugridge, W.B.; Colbourn, C.J.; Collofello, J.S. (2003). A variable strength interaction testing of components, Proceedings 27th Annual International Computer Software and Applications Conference, 413-418, 2003.

[32] Homaid, A.B.; Alsewari, A.; Zamli, K.; Alsariera, Y.A. (2019). Adapting the elitism on greedy algorithm for variable strength combinatorial test cases generation, IET Software, 13 (4), 286-294, 2019.

[33] Bush, K.A. (1952). Orthogonal arrays of index unity, The Annals of Mathematical Statistics, 426-434, 1952.

[34] Williams, A.W. (2000). Determination of test configurations for pair-wise interaction coverage, Testing of Communicating Systems, 59-74, 2000.

[35] Lei, Y.; Tai, K.C. (1998). In-parameter-order: A test generation strategy for pairwise testing, Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No. 98EX231), 254-261, 1998.

[36] Forbes, M.; Lawrence, J.; Lei, Y.; Kacker, R.N; Kuhn, D.R. (2008). Refining the in-parameterorder strategy for constructing covering arrays, Journal of Research of the National Institute of Standards and Technology, 113 (5), 287, 2008.

[37] Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; Lawrence, J. (2008). IPOG/IPOG-D: efficient test generation for multi-way combinatorial testing, Software Testing, Verification and Reliability, 18 (3), 125-148, 2008.

[38] Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; Lawrence, J. (2007). IPOG: A general strategy for t-way software testing, 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS'07), 549-556, 2007.

[39] Cohen, D.M.; Dalal, S.R.; Fredman, M.L.; Patton, G.C. (1997). The AETG system: An approach to testing based on combinatorial design, IEEE Transactions on Software Engineering, 23 (7), 437-444, 1997.

[40] Jenkins, "Jenny". Available: http://www.burtleburtle.net/bob/math/, Accesed on 2003.

[41] Cohen, M.B.; Colbourn, C.J.; Ling, A.C. (2003). Augmenting simulated annealing to build interaction test suites, 14th International Symposium on Software Reliability Engineering, 394-405, 2003.

[42] Tung, Y.; Aldiwan, W.S. (2000). Automating test case generation for the new generation mission software system, IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484), 1, 431-437, 2000

[43] Bryce, R.C.; Colbourn, C.J. (2009). A density-based greedy algorithm for higher strength covering arrays, Software Testing, Verification and Reliability, 19 (1), 37-53, 2009.

[44] Lehmann, E.; Wegener, J. (2000). Test case design by means of the CTE XL, Proceedings of the 8th European International Conference on Software Testing, Analysis & Review (EuroSTAR 2000), Kopenhagen, Denmark, 2000.

[45] Czerwonka, J. (2008). Pairwise testing in the real world: Practical extensions to test-case scenarios, Microsoft Corporation, Software Testing Technical Articles, 2008.

[46] Younis, M.I.; Zamli, K.; Klaib, M.; Soh, Z.H.C.; Abdullah, S.; Isa, N. (2010). Assessing IRPS as an efficient pairwise test data generation strategy, International Journal of Advanced Intelligence Paradigms, 2 (1), 90-104, 2010.

[47] Gonzalez-Hernandez, L.; Rangel-Valdez, N.; Torres-Jimenez, J. (2010). Construction of mixed covering arrays of variable strength using a tabu search approach, International Conference on Combinatorial Optimization and Applications, 51-64, 2010.

[48] Nurmela, K.J. (2004). Upper bounds for covering arrays by tabu search, Discrete applied mathematics, 138 (1), 143-152, 2004.

[49] Chen, X.; Gu, Q.; Qi, J.; Chen, D. (2010). Applying particle swarm optimization to pairwise testing, IEEE 34th Annual Computer Software and Applications Conference, 107-116, 2010.

[50] Nasser, A.B.; Sariera, Y.A.; Alsewari, A.R.; Zamli, K. (2015). A Cuckoo Search Based Pairwise Strategy For Combinatorial Testing Problem, Journal of Theoretical & Applied Information Technology, 82 (1), 2015.

[51] Shiba, T.; Tsuchiya, T.; Kikuno, T. (2004). Using artificial life techniques to generate test cases for combinatorial testing, Proceedings of the 28th Annual International Computer Software and Applications Conference, 72-77, 2004.

[52] McCaffrey, J.D. (2009). Generation of pairwise test sets using a genetic algorithm, 33rd annual IEEE international computer software and applications conference, 82 , 626-631, 2009.

[53] Ahmed, B.; Zamli, K.; Lim, C.P. (2012). Constructing a t-way interaction test suite using the particle swarm optimization approach, International Journal of Innovative Computing, Information and Control, 8 (1), 431-452, 2012.

[54] Ahmed, B.; Zamli, K. (2011). A variable strength interaction test suites generation strategy using particle swarm optimization, Journal of Systems and Software, 84 (12), 2171-2185, 2011.

[55] Wu, H.; Nie, C.; Kuo, F.; Leung, H.; Colbourn, C.J. (2014). A discrete particle swarm optimization for covering array generation, IEEE Transactions on Evolutionary Computation, 49 (4), 575-591, 2014.

[56] Rabbi, K.; Mamun, Q.; Islam, M.l. (2015). An efficient particle swarm intelligence based strategy to generate optimum test data in t-way testing, IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 123-128, 2015.

[57] Alsewari, A.; Zamli, K. (2012). Design and implementation of a harmony-search-based variablestrength t-way testing strategy with constraints support, Information and Software Technology, 54 (6), 553-568, 2012.

[58] Jia, D.; Zheng, G.; Qu, B.; Khan, M.K. (2011). A hybrid particle swarm optimization algorithm for high-dimensional problems, Computers & Industrial Engineering, 61 (4), 1117-1122, 2011.

[59] Stardom, J. (2001). Metaheuristics and the search for covering and packing arrays, Simon Fraser University Burnaby.

[60] Alazzawi, A.K.; Rais, H.; Basri, S. (2020). HABC: Hybrid artificial bee colony for generating variable t-way test sets, Journal of Engineering Science and Technology (JESTEC), 15 (2), 746- 767, 2020.

[61] Alazzawi, A.K.; Rais, H.; Basri, S. (2019). Parameters tuning of hybrid artificial bee colony search based strategy for t-way testing, Int. J. Innov. Technol. Exploring Eng., 8 (55), 204-212, 2019.

[62] Alazzawi, A.K.; Rais, H.; Basri, S. (2019). Hybrid Artificial Bee Colony Algorithm for t-Way Interaction Test Suite Generation, Computer Science On-line Conference, 192-199, 2019.

[63] Alazzawi, A.K.; Rais, H.; Basri, S.; Alsariera, Y.A.; Balogun, A.O.; Imam, A.A. (2020). A Hybrid Artificial Bee Colony Strategy for t-way Test Set Generation with Constraints Support, Journal of Physics: Conference Series, 1529 (4), 042068, 2020.

[64] Alazzawi, A.K.; Rais, H.; Basri, S.; Alsariera, Y.A. (2020). Pairwise Test Suite Generation Based on Hybrid Artificial Bee Colony Algorithm, Advances in Electronics Engineering, 137-145, 2020.

[65] Alazzawi, A.K.; Rais, H.; Basri, S.; Alsariera, Y.A. (2019). PhABC: A hybrid artificial bee colony strategy for pairwise test suite generation with constraints support, IEEE Student Conference on Research and Development (SCOReD), 106-111, 2019.

[66] Ahmed, B.; Abdulsamad, T.; Potrus, M.Y. (2015). Achievement of minimized combinatorial test suite for configuration-aware software functional testing using the cuckoo search algorithm, Information and Software Technology, 66, 13-29, 2015.
How to Cite
ALAZZAWI, Ammar Kareem et al. HABCSm: A Hamming Based t-way Strategy based on Hybrid Artificial Bee Colony for Variable Strength Test Sets Generation. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 16, n. 5, oct. 2021. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/4308>. Date accessed: 18 oct. 2021. doi: https://doi.org/10.15837/ijccc.2021.5.4308.