Information Volume of Mass Function

  • Yong Deng

Abstract

Given a probability distribution, its corresponding information volume is Shannon entropy. However, how to determine the information volume of a given mass function is still an open issue. Based on Deng entropy, the information volume of mass function is presented in this paper. Given a mass function, the corresponding information volume is larger than its uncertainty measured by Deng entropy. In addition, when the cardinal of the frame of discernment is identical, both the total uncertainty case and the BPA distribution of the maximum Deng entropy have the same information volume. Some numerical examples are illustrated to show the efficiency of the proposed information volume of mass function.

References

[1] Alcantud, J.C.; Feng, F.; Yager, R. (2020). An N-soft set approach to rough sets. IEEE Transactions on Fuzzy Systems, 28(11), 2996-3007, 2020.
https://doi.org/10.1109/TFUZZ.2019.2946526

[2] Cao, Z.; Chuang, C.H.; King, J.K.; Lin, C.T.(2019). Multi-channel EEG recordings during a sustained-attention driving task. Scientific Data, 6, 19, 2019.
https://doi.org/10.1038/s41597-019-0027-4

[3] Cao, Z.; Ding, W.; Wang, Y.K.; Hussain, F.K.; Al-Jumaily, A.; Lin, C.T.(2019). Effects of Repetitive SSVEPs on EEG Complexity using Multiscale Inherent Fuzzy Entropy. Neurocomputing, 389, 198-206, 2020.
https://doi.org/10.1016/j.neucom.2018.08.091

[4] Cao, Z.; Lin, C.T.; Lai, K.L.; Ko, L.W.; King, J.T.; Liao, K.K.; Fuh, J.L.; Wang, S.J.(2020). Extraction of SSVEPs-based Inherent fuzzy entropy using a wearable headband EEG in migraine patients. IEEE Transactions on Fuzzy Systems, 28(1), 14-27, 2020.
https://doi.org/10.1109/TFUZZ.2019.2905823

[5] Cavaliere, D.; Morente-Molinera, J.A.; Loia, V.; Senatore, S.; Herrera-Viedma, E.(2020). Collective scenario understanding in a multi-vehicle system by consensus decision making. IEEE Transactions on Fuzzy Systems, 28(9), 1984-1995, 2020.
https://doi.org/10.1109/TFUZZ.2019.2928787

[6] Dempster, A.P.(1967). Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics, 38(2), 325-339, 1967.
https://doi.org/10.1214/aoms/1177698950

[7] Deng, X.; Jiang, W.(2019). A total uncertainty measure for D numbers based on belief intervals. International Journal of Intelligent Systems, 34(12), 3302-3316, 2019.
https://doi.org/10.1002/int.22195

[8] Deng, Y.(2016). Deng entropy. Chaos, Solitons & Fractals, 91, 549 - 553, 2016.
https://doi.org/10.1016/j.chaos.2016.07.014

[9] Deng, Y.(2020). Uncertainty measure in evidence theory. Science China Information Sciences, 63(11), 210201, 2020.
https://doi.org/10.1007/s11432-020-3006-9

[10] Dzitac, I.; Filip, F.G.; Manolescu, M.J.(2017). Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh. International Journal of Computers Communications & Control, 12(6), 748-789, 2017.
https://doi.org/10.15837/ijccc.2017.6.3111

[11] Fang, R.; Liao, H.; Yang, J.B.; Xu, D.L.(2020). Generalised probabilistic linguistic evidential reasoning approach for multi-criteria decision-making under uncertainty. Journal of the Operational Research Society, (2), 1-15, 2020.
https://doi.org/10.1080/01605682.2019.1654415

[12] Feng, F.; Xu, Z.; Fujita, H.; Liang, M. (2020). Enhancing PROMETHEE method with intuitionistic fuzzy soft sets. International Journal of Intelligent Systems, 35(7), 1071-1104, 2020.
https://doi.org/10.1002/int.22235

[13] Fu, C.; Chang, W.; Xue, M.; Yang, S. (2019). Multiple criteria group decision making with belief distributions and distributed preference relations. European Journal of Operational Research, 273(2), 623-633, 2019.
https://doi.org/10.1016/j.ejor.2018.08.012

[14] Fu, C.; Liu, W.; Chang, W. (2020). Data-driven multiple criteria decision making for diagnosis of thyroid cancer. Annals of Operations Research, 293, 833-862, 2020.
https://doi.org/10.1007/s10479-018-3093-7

[15] Fujita, H.; Gaeta, A.; Loia, V.; Orciuoli, F. (2019). Hypotheses analysis and assessment in counter-terrorism activities: a method based on OWA and fuzzy probabilistic rough sets. IEEE Transactions on Fuzzy Systems, 28(5), 831-845, 2020.
https://doi.org/10.1109/TFUZZ.2019.2955047

[16] Fujita, H.; Ko, Y.C. (2020). A heuristic representation learning based on evidential memberships: Case study of UCI-SPECTF. International Journal of Approximate Reasoning. 120, 125-137, 2020.
https://doi.org/10.1016/j.ijar.2020.02.002

[17] Gao, X.; Deng, Y. (2020). Quantum Model of Mass Function. International Journal of Intelligent Systems, 35(2), 267-282, 2020.
https://doi.org/10.1002/int.22208

[18] Gao, X.; Deng, Y. (2020). The pseudo-pascal triangle of maximum deng entropy. International Journal of Computers Communications & Control, 15(1), 1006, 2020.
https://doi.org/10.15837/ijccc.2020.1.3735

[19] Garg, H.; Chen, S.(2020). Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets. Information Sciences, 517, 427-447, 2020.
https://doi.org/10.1016/j.ins.2019.11.035

[20] Garg, H.; Kumar, K.(2019). Linguistic interval-valued atanassov intuitionistic fuzzy sets and their applications to group decision making problems. IEEE Transactions on Fuzzy Systems, 27(12), 2302-2311, 2019.
https://doi.org/10.1109/TFUZZ.2019.2897961

[21] Gou, X.; Liao, H.; Xu, Z.; Min, R.; Herrera, F. (2019). Group decision making with double hierarchy hesitant fuzzy linguistic preference relations: consistency based measures, index and repairing algorithms and decision model. Information Sciences, 489, 93-112, 2019.
https://doi.org/10.1016/j.ins.2019.03.037

[22] Gou, X.; Xu, Z.; Herrera, F.(2018). Consensus reaching process for large-scale group decision making with double hierarchy hesitant fuzzy linguistic preference relations. Knowledge-Based Systems, 157, 20-33, 2018.
https://doi.org/10.1016/j.knosys.2018.05.008

[23] Jiang, W., Cao, Y.; Deng, X. (2020). A Novel Z-network Model Based on Bayesian Network and Z-number. IEEE Transactions on Fuzzy Systems, 28(8), 1585-1599, 2020.
https://doi.org/10.1109/TFUZZ.2019.2918999

[24] Kang, B.; Deng, Y.: The maximum Deng entropy. IEEE Access, 7, 120758-120765, 2019.
https://doi.org/10.1109/ACCESS.2019.2937679

[25] Kang, B.; Zhang, P.; Gao, Z.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R.(2020). Environmental assessment under uncertainty using dempster-shafer theory and z-numbers. Journal of Ambient Intelligence and Humanized Computing, 11, 2041-2060, 2020.
https://doi.org/10.1007/s12652-019-01228-y

[26] Lee, P. (1980). Probability theory. Bulletin of the London Mathematical Society, 12(4), 318-319, 1980.
https://doi.org/10.1112/blms/12.4.318

[27] Li, H.; Yuan, R.; Fu, J. (2019). A reliability modeling for multi-component systems considering random shocks and multistate degradation. IEEE Access, 7, 168805-168814, 2019.
https://doi.org/10.1109/ACCESS.2019.2953483

[28] Liao, H.; Mi, X.; Xu, Z.(2020) A survey of decision-making methods with probabilistic linguistic information: Bibliometrics, preliminaries, methodologies, applications and future directions. Fuzzy Optimization and Decision Making, 19, 81-134, 2020.
https://doi.org/10.1007/s10700-019-09309-5

[29] Huang, L., Liu, Z., Pan, Q. et al. (2020). Evidential combination of augmented multi-source of information based on domain adaptation. Sci. China Inf. Sci., 63, 210203, 2020.
https://doi.org/10.1007/s11432-020-3080-3

[30] Liu, B.; Deng, Y. (2019). Risk evaluation in failure mode and effects analysis based on D numbers theory. International Journal of Computers Communications & Control, 14(5), 672-691, 2019.

[31] Liu, F., Gao, X., Zhao, J., Deng, Y.(2019). Generalized belief entropy and its application in identifying conflict evidence. IEEE Access, 7(1), 126625-126633, 2019.
https://doi.org/10.1109/ACCESS.2019.2939332

[32] Liu, H.; Dzitac, I.; Guo, S. (2018). Reduction of conditional factors in causal analysis. International Journal of Computers Communications & Control, 13(3), 383-390, 2018.
https://doi.org/10.15837/ijccc.2018.3.3252

[33] Liu, P.; Zhang, X. (2020). A novel approach to multi-criteria group decision-making problems based on linguistic D numbers. Computational and Applied Mathematics, 39, 132, 2020.
https://doi.org/10.1007/s40314-020-1132-x

[34] Liu, P.; Zhang, X.; Wang, Z.(2020). An extended vikor method for multiple attribute decision making with linguistic D numbers based on fuzzy entropy. International Journal of Information Technology & Decision Making. 19(1), 143-167, 2020.
https://doi.org/10.1142/S0219622019500433

[35] Liu, Q.; Tian, Y.; Kang, B.(2019). Derive knowledge of Z-number from the perspective of Dempster-Shafer evidence theory. Engineering Applications of Artificial Intelligence, 85, 754-764, 2019.
https://doi.org/10.1007/978-3-030-35288-2

[36] Liu, Y.; Jiang, W.(2020). A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making. Soft Computing, 24, 6987-7003, 2020.
https://doi.org/10.1007/s00500-019-04332-5

[37] Liu, Z.; Zhang, X.; Niu, J.; Dezert, J.(2020). Combination of classifiers with different frames of discernment based on belief functions. IEEE Transactions on Fuzzy Systems, doi: 10.1109/TFUZZ.2020.2985332, 2020. (2020)
https://doi.org/10.1109/TFUZZ.2020.2985332

[38] Liu, Z.G.; Pan, Q.; Dezert, J.; Martin, A.(2018). Combination of classifiers with optimal weight based on evidential reasoning. IEEE Transactions on Fuzzy Systems, 6(3), 1217-1230, 2018.
https://doi.org/10.1109/TFUZZ.2017.2718483

[39] Luo, Z., Deng, Y.(2020) A vector and geometry interpretation of basic probability assignment in Dempster-Shafer theory. International Journal of Intelligent Systems, 35(6), 944-962, 2020.
https://doi.org/10.1002/int.22231

[40] Morente-Molinera, J.; Wu, X.; Morfeq, A.; Al-Hmouz, R.; Herrera-Viedma, E.(2020). A novel multi-criteria group decision-making method for heterogeneous and dynamic contexts using multigranular fuzzy linguistic modelling and consensus measures. Information Fusion, 53, 240-250, 2020.
https://doi.org/10.1016/j.inffus.2019.06.028

[41] Pan, L., Deng, Y.(2020). Probability transform based on the ordered weighted averaging and entropy difference. International Journal of Computers Communications & Control, 15(4), 3743, 2020.
https://doi.org/10.15837/ijccc.2020.4.3743

[42] Pan, Y.,; Zhang, L.; Li, Z.; Ding, L. (2020). Improved fuzzy bayesian network-based risk analysis with interval-valued fuzzy sets and D-S evidence theory. IEEE Transactions on Fuzzy Systems, 28(9), 2063-2077, 2020.
https://doi.org/10.1109/TFUZZ.2019.2929024

[43] Pan, Y.; Zhang, L.; Wu, X.; Skibniewski, M.J.(2020). Multi-classifier information fusion in risk analysis. Information Fusion, 60, 121-136, 2020.
https://doi.org/10.1016/j.inffus.2020.02.003

[44] Pawlak, Z.(1982). Rough sets. International journal of computer & information sciences, 11(5), 341-356, 1982.
https://doi.org/10.1007/BF01001956

[45] Rong, H.; Ge, M.; Zhang, G.; Zhu, M.(2018). An approach for detecting fault lines in a small current grounding system using fuzzy reasoning spiking neural p systems. International Journal of Computers Communications & Control, 13(4), 521-536, 2018.
https://doi.org/10.15837/ijccc.2018.4.3220

[46] Shafer, G.(1976). A mathematical theory of evidence, vol. 1. Princeton university press, Princeton, 1976.

[47] Shannon, C.E.(1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 379-423, 1948.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[48] Song, Y.; Fu, Q.; Wang, Y.F.; Wang, X.(2019). Divergence-based cross entropy and uncertainty measures of Atanassov's intuitionistic fuzzy sets with their application in decision making. Applied Soft Computing, 84, 105703, 2019.
https://doi.org/10.1016/j.asoc.2019.105703

[49] Song, Y.; Wang, X.; Wu, W.; Quan, W.; Huang, W.(2018). Evidence combination based on credibility and non-specificity. Pattern Analysis and Applications, 21(1), 167-180, 2018.
https://doi.org/10.1007/s10044-016-0575-6

[50] Tsallis, C.(1988). Possible generalization of boltzmann-gibbs statistics. Journal of statistical physics, 52(1-2), 479-487, 1988.
https://doi.org/10.1007/BF01016429

[51] Tsallis, C.(2009). Nonadditive entropy: The concept and its use. The European Physical Journal A, 40(3), 257, 2009.
https://doi.org/10.1140/epja/i2009-10799-0

[52] Wang, H.; Fang, Y.P.; Zio, E.(2019). Risk assessment of an electrical power system considering the influence of traffic congestion on a hypothetical scenario of electrified transportation system in new york stat. IEEE Transactions on Intelligent Transportation Systems, 2019.
https://doi.org/10.1109/TITS.2019.2955359

[53] Xiao, F.(2019). Generalization of Dempster-Shafer theory: A complex mass function. Applied Intelligence, DOI: 10.1007/s10489-019-01617-y, 2019.
https://doi.org/10.1007/s10489-019-01617-y

[54] Xiao, F.(2020). CED: A distance for complex mass functions. IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2020.2984918, 2020.
https://doi.org/10.1109/TNNLS.2020.2984918

[55] Xiao, F.(2020). GIQ: A generalized intelligent quality-based approach for fusing multi-source information. IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2020.2991296, 2020.
https://doi.org/10.1109/TFUZZ.2020.2991296

[56] Xiao, F.(2020). A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion. Information Sciences, 514, 462-483, 2020.
https://doi.org/10.1016/j.ins.2019.11.022

[57] Xu, X.; Xu, H.; Wen, C.; Li, J.; Hou, P.; Zhang, J.(2018). A belief rule-based evidence updating method for industrial alarm system design. Control Engineering Practice, 81, 73-84, 2018.
https://doi.org/10.1016/j.conengprac.2018.09.001

[58] Xu, X.B.; Ma, X.; Wen, C.L.; Huang, D.R.; Li, J.N.(2018). Self-tuning method of PID parameters based on belief rule base inference. Information Technology and Control, 47(3), 551-563, 2018.
https://doi.org/10.5755/j01.itc.47.3.19045

[59] Yager, R.R.(2012). On z-valuations using Zadeh's Z-numbers. International Journal of Intelligent Systems, 27(3), 259-278, 2012.
https://doi.org/10.1002/int.21521

[60] Yager, R.R. (2018). Fuzzy rule bases with generalized belief structure inputs. Engineering Applications of Artificial Intelligence, 72, 93-98, 2018.
https://doi.org/10.1016/j.engappai.2018.03.005

[61] Yager, R.R.: Interval valued entropies for dempster-shafer structures. Knowledge-Based Systems 161, 390-397 (2018)
https://doi.org/10.1016/j.knosys.2018.08.001

[62] Yager, R.R.(2019). Generalized Dempster-Shafer structures. IEEE Transactions on Fuzzy Systems, 27(3), 428-435, 2019.
https://doi.org/10.1109/TFUZZ.2018.2859899

[63] Yan, H., Deng, Y.(2020). An improved belief entropy in evidence theory. IEEE Access, 8(1), 57505-57516, 2020.
https://doi.org/10.1109/ACCESS.2020.2982579

[64] Yang, J., Xu, D.(2002). On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, Part A 32(3), 289-304, 2002.
https://doi.org/10.1109/TSMCA.2002.802746

[65] Yang, J.; Xu, D.(2013). Evidential reasoning rule for evidence combination. Artificial Intelligence, 205, 1-29, 2013.
https://doi.org/10.1016/j.artint.2013.09.003

[66] Yuan, R.; Tang, M.; Wang, H.; Li, H.(2019). A reliability analysis method of accelerated performance degradation based on bayesian strategy. IEEE Access, 7, 169047-169054, 2019.
https://doi.org/10.1109/ACCESS.2019.2952337

[67] Zadeh, L.A.(1965). Fuzzy sets. Information and control, 8(3), 338-353, 1965.
https://doi.org/10.1016/S0019-9958(65)90241-X

[68] Zhou, M.; Liu, X.; Yang, J.(2017). Evidential reasoning approach for MADM based on incomplete interval value. Journal of Intelligent & Fuzzy Systems, 33(6), 3707-3721, 2017.
https://doi.org/10.3233/JIFS-17522

[69] Zhou, M.; Liu, X.B.; Chen, Y.W.; Yang, J.B.(2018). Evidential reasoning rule for MADM with both weights and reliabilities in group decision making. Knowledge-Based Systems, 143, 142-161, 2018.
https://doi.org/10.1016/j.knosys.2017.12.013
Published
2020-10-26
How to Cite
DENG, Yong. Information Volume of Mass Function. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 15, n. 6, oct. 2020. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3983>. Date accessed: 30 nov. 2020. doi: https://doi.org/10.15837/ijccc.2020.6.3983.