Path Selection using Fuzzy Weight Aggregated Sum Product Assessment

Abstract

The search for safe evacuation routes is an important issue to save flood victims so they can reach the evacuation centre. This research is a simulation of searching for safe and fast travel evacuation route that have 24 alternative routes. Every road that will be transverse has a limit with certain criteria. Calculate of the weight of the constraints using the Multi-Criteria Decision Making (MCDM) method, namely the Analytical Hierarchy Process (AHP) andWeight Aggregated Sum Product Assessment (WASPAS) based on Fuzzy logic. The criteria of obstacle that qualitative for obscurity so that it makes sense fuzzy will provide supportive input for the MCDM problem. The Fuzzy AHP method is applied to calculate the weight of an application while the Fuzzy WASPAS (WASPAS-F)method is used to determine the safest alternative route. By using the Fuzzy AHP and WASPAS-F methods, a safe and fast pathway weights 0.662

References

[1] Ahmadisharaf, E.; Kalyanapu, A. J.; Chung E. (2016a). Spatial probabilistic multi-criteria decision making for assessment of flood management alternatives, Journal of Hydrology, 533, 365-378, 2016.
https://doi.org/10.1016/j.jhydrol.2015.12.031

[2] Ahmadisharaf, E.; Kalyanapu, A. J.; Chung E. (2016b). Integrating flood hazard into site selection of detention basins using spatial multi-criteria decision-making, Journal of environmental planning, 59(8), 1397-1417, 2016.
https://doi.org/10.1080/09640568.2015.1077104

[3] Aouadni, S., Rebai, A., and Turskis, Z. (2017). The meaningful mixed data TOPSIS (TOPSISMMD) method and its application in supplier selection, Studies in Informatics and Control, 26(3), 353-363, 2017.
https://doi.org/10.24846/v26i3y201711

[4] Bagocius, V.; Zavadskas, E. K.; Turskis, Z. (2016). Multi-person selection of the best wind turbine based on the multi-criteria integrated additive-multiplicative utility function, Journal of civil engineering and management, 20(4), 590-599, 2016.
https://doi.org/10.3846/13923730.2014.932836

[5] Bathrellos, G.; Karymbalis, E.; Skilodimou, H.; Gaki-Papanastassiou, K.; and Baltas, E. (2016). Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece, Environmental Earth Sciences, 75(4), 319, 2016.
https://doi.org/10.1007/s12665-015-5157-1

[6] Baušys, R.; Juodagalvien˙e, B. (2017). Garage location selection for residential house byWASPASSVNS method, Journal of Civil Engineering Management, 23(3), 421-429, 2017.
https://doi.org/10.3846/13923730.2016.1268645

[7] Bhushan, N.; Rai, K. (2014). Strategic Decision Making: Applying the Analytic Hierarchy Process, Springer London, 2014.

[8] Bid, S.; Siddique, G. (2019). Human risk assessment of Panchet Dam in India using TOPSIS and WASPAS Multi-Criteria Decision-Making (MCDM) methods, Heliyon, 5(6), e01956, 2019.
https://doi.org/10.1016/j.heliyon.2019.e01956

[9] Boonmee, C.; Ikutomi, N.; Asada, T.; Arimura, M. (2017). An integrated multi-model optimization and fuzzy AHP for shelter site selection and evacuation planning, Public Work Planning, 73(5), I_225-I_240, 2017.
https://doi.org/10.2208/jscejipm.73.I_225

[10] Chakraborty, A.; Joshi, P. (2016). Mapping disaster vulnerability in India using analytical hierarchy process, Geomatics, Natural Hazards and Risk, 7(1), 308-325, 2016.
https://doi.org/10.1080/19475705.2014.897656

[11] Chakraborty, S.; Zavadskas, E. K. (2014). Applications of WASPAS method in manufacturing decision making, Informatica, 25(1), 1-20, 2014.
https://doi.org/10.15388/Informatica.2014.01

[12] Chakraborty, S.; Zavadskas, E. K.; Antucheviciene, J. (2015). Application ofWASPAS methods as a multi-criteria decision-making tool, Economic Computation and Economic Cybernetics Studies and Research, 49(1), 2015.

[13] Chang, D. -Y. (1996). Applications of the extent analysis method on fuzzy AHP, European journal of operational research, 95(3), 649-655, 1996.
https://doi.org/10.1016/0377-2217(95)00300-2

[14] Chen, H.; Ito, Y.; Sawamukai, M.; Tokunaga, T. (2015). Flood hazard assessment in the Kujukuri Plain of Chiba Prefecture, Japan, based on GIS and multicriteria decision analysis, Natural Hazards, 78(1), 105-120, 2015.
https://doi.org/10.1007/s11069-015-1699-5

[15] Chitsaz, N.; Banihabib; M. E. (2015). Comparison of different multi criteria decision-making models in prioritizing flood management alternatives, Water Resources Management, 29(8), 2503- 2525, 2015.
https://doi.org/10.1007/s11269-015-0954-6

[16] Danumah, J. H.; Odai, S. N.; Saley, B. M.; Szarzynski, J.; Thiel, M.; Kwaku, A.; Kouame, F. K.; Akpa, L. Y. (2016). Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques,(cote d'ivoire), Geoenvironmental Disasters, 3(1), 10, 2016.
https://doi.org/10.1186/s40677-016-0044-y

[17] Dzitac, I.; Filip, F.G.; Manolescu, M.J. (2017). Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017.
https://doi.org/10.15837/ijccc.2017.6.3111

[18] Elsheikh, R. F. A.; Ouerghi, S.; and Elhag, A. R. (2015). Flood risk map based on GIS, and multi criteria techniques (case study Terengganu Malaysia), Journal of Geographic Information System, 7(04), 348, 2015.
https://doi.org/10.4236/jgis.2015.74027

[19] Emovon, I.; Norman, R.; Murphy, A.; Okwu, M. (2018). Application of WASPAS In Enhancing Reliability Centered Maintenance for Ship System Maintenance, Journal of Engineering and Technology, 9(1), 2018.

[20] Erdogan, S. A.; Šaparauskas, J.; Turskis, Z. (2017). Decision making in construction management: AHP and expert choice approach, Procedia engineering, 172, 270-276, 2017.
https://doi.org/10.1016/j.proeng.2017.02.111

[21] Guneri, A. F.; Gul, M.; Ozgurler, S. (2015). A fuzzy AHP methodology for selection of risk assessment methods in occupational safety, International Journal of Risk Assessment Management, 18(3-4), 319-335, 2015.
https://doi.org/10.1504/IJRAM.2015.071222

[22] Hategekimana, Y.; Yu, L.; Nie, Y.; Zhu, J.; Liu, F.; Guo, F. (2018). Integration of multiparametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya, Natural Hazards, 92(2), 1137-1153, 2018.
https://doi.org/10.1007/s11069-018-3244-9

[23] Hwang, C. L.; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications, A State-of-the Art-Survey, City: Springer-Verlag., Berlin Heidelberg, 1981.
https://doi.org/10.1007/978-3-642-48318-9_3

[24] Kazakis, N.; Kougias, I.; Patsialis, T. (2015). Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece, Science of the Total Environment, 538, 555-563, 2015.
https://doi.org/10.1016/j.scitotenv.2015.08.055

[25] Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H. R. (2016). A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weightsof- evidence bivariate statistical models with multi-criteria decision-making technique, Natural Hazards, 83(2), 947-987, 2016.
https://doi.org/10.1007/s11069-016-2357-2

[26] Kumar, R.; Anbalagan, R. (2016). Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand, Journal of the Geological Society of India, 87(3), 271-286, 2016.
https://doi.org/10.1007/s12594-016-0395-8

[27] Lai, C.; Chen, X.; Chen, X.; Wang, Z.; Wu, X.;Zhao, S. (2015). A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory, Natural Hazards, 77(2), 1243-1259, 2015.
https://doi.org/10.1007/s11069-015-1645-6

[28] Lesniak, A.; Kubek, D.; Plebankiewicz, E.; Zima, K.; Belniak, S. (2018). Fuzzy AHP application for supporting contractors' bidding decision, Symmetry, 10(11), 642, 2018.
https://doi.org/10.3390/sym10110642

[29] Mangla, S. K.; Kumar, P.; Barua, M. K. (2015). Risk analysis in green supply chain using fuzzy AHP approach: A case study, Resources, Conservation and Recycling, 104, 375-390, 2015.
https://doi.org/10.1016/j.resconrec.2015.01.001

[30] Mir, S. A.; Padma, T. (2016). Evaluation and prioritization of rice production practices and constraints under temperate climatic conditions using Fuzzy Analytical Hierarchy Process (FAHP), Spanish journal of agricultural research, 14(4), 22, 2016.
https://doi.org/10.5424/sjar/2016144-8699

[31] Mishra, A. R.; Rani, P. (2018). Interval-valued intuitionistic fuzzy WASPAS method: application in reservoir flood control management policy, Group Decision Negotiation, 27(6), 1047-1078, 2018.
https://doi.org/10.1007/s10726-018-9593-7

[32] Mishra, A. R.; Singh, R. K.; Motwani, D. (2019). Multi-criteria assessment of cellular mobile telephone service providers using intuitionistic fuzzy WASPAS method with similarity measures, Granular Computing, 4(3), 511-529, 2019.
https://doi.org/10.1007/s41066-018-0114-5

[33] Morgan, R. (2017). An investigation of constraints upon fisheries diversification using the Analytic Hierarchy Process (AHP), Marine Policy, 86, 24-30, 2017.
https://doi.org/10.1016/j.marpol.2017.05.037

[34] Mosadeghi, R.; Warnken, J.; Tomlinson, R.; Mirfenderesk, H. (2015). Comparison of Fuzzy- AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning, Computers, Environment and Urban Systems, 49, 54-65, 2015.
https://doi.org/10.1016/j.compenvurbsys.2014.10.001

[35] Nyimbili, P. H.; Erden, T.; Karaman, H. (2018). Integration of GIS, AHP and TOPSIS for earthquake hazard analysis, Natural hazards, 92(3), 1523-1546, 2018.
https://doi.org/10.1007/s11069-018-3262-7

[36] Papaioannou, G.; Vasiliades, L.; Loukas, A. (2015). Multi-criteria analysis framework for potential flood prone areas mapping, Water Resources Management, 29(2), 399-418, 2015.
https://doi.org/10.1007/s11269-014-0817-6

[37] Radmehr, A.; Araghinejad, S. (2015). Flood vulnerability analysis by fuzzy spatial multi criteria decision making, Water Resources Management, 29(12), 4427-4445, 2015.
https://doi.org/10.1007/s11269-015-1068-x

[38] Rahmati, O.; Zeinivand, H.; Besharat, M. J. G. (2016). Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis, Natural Hazards, and Risk, 7(3), 1000-1017, 2016.
https://doi.org/10.1080/19475705.2015.1045043

[39] Rudnik, K. (2017). Transport trolley control in a manufacturing system using simulation with the FSAW, FWASPAS and FTOPSIS methods, International Conference on Intelligent Systems in Production Engineering and Maintenance, 440-449, 2017
https://doi.org/10.1007/978-3-319-64465-3_42

[40] Saaty, T. L. (2008). Decision making with the analytic hierarchy process, International journal of services sciences, 1(1), 83-98, 2008.
https://doi.org/10.1504/IJSSCI.2008.017590

[41] Sabah, L. (2017). Earthquake Hazard Analysis for Districts of Düzce via AHP and Fuzzy Logic Methods, The Journal of Cognitive Systems, 2(1), 1-5, 2017.

[42] Samanta, S.; Koloa, C.; Kumar Pal, D.; Palsamanta, B. (2016). Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA), Hydrology, 3(3), 29, 2016.
https://doi.org/10.3390/hydrology3030029

[43] Singh, R. P.; and Nachtnebel, H. P. (2016). Analytical hierarchy process (AHP) application for reinforcement of hydropower strategy in Nepal, Renewable Sustainable Energy Reviews, 55, 43-58, 2016.
https://doi.org/10.1016/j.rser.2015.10.138

[44] Thanki, S.; Govindan, K.; Thakkar, J. (2016). An investigation on lean-green implementation practices in Indian SMEs using analytical hierarchy process (AHP) approach, Journal of Cleaner Production, 135, 284-298, 2016.
https://doi.org/10.1016/j.jclepro.2016.06.105

[45] Tugba Turgut, B.; Tas, G.; Herekoglu, A.; Tozan, H.; Vayvay, O. (2011). A fuzzy AHP based decision support system for disaster center location selection and a case study for Istanbul, Disaster Prevention Management: An International Journal, 20(5), 499-520, 2011.
https://doi.org/10.1108/09653561111178943

[46] Turskis, Z.; Dzitac, S.; Stankiuviene, A.; Šukys, R. (2019a). A Fuzzy Group Decision-making Model for Determining the Most Influential Persons in the Sustainable Prevention of Accidents in the Construction SMEs, International Journal of Computers Communications & Control, 14(1), 90-106.
https://doi.org/10.15837/ijccc.2019.1.3364

[47] Turskis, Z.; Goranin, N.; Nurusheva, A.; Boranbayev, S. (2019b). A fuzzy WASPAS-based approach to determine critical information infrastructures of EU sustainable development, Sustainability, 11(2), 424, 2019.
https://doi.org/10.3390/su11020424

[48] Turskis, Z.; Juodagalvien˙e, B. (2016). A novel hybrid multi-criteria decision-making model to assess a stairs shape for dwelling houses, Journal of Civil Engineering and Management, 22(8), 1078-1087, 2016.
https://doi.org/10.3846/13923730.2016.1259179

[49] Turskis, Z.; Lazauskas, M.; Zavadskas, E. K. (2012). Fuzzy multiple criteria assessment of construction site alternatives for non-hazardous waste incineration plant in Vilnius city, applying ARAS-F and AHP methods, Journal of Environmental Engineering and Landscape Management, 20(2), 110-120, 2012.
https://doi.org/10.3846/16486897.2011.645827

[50] Turskis, Z.; Zavadskas, E. K.; Antucheviciene, J.; Kosareva, N. (2015). A hybrid model based on fuzzy AHP and fuzzyWASPAS for construction site selection, International Journal of Computers Communications & Control, 10(6), 113-128, 2011.
https://doi.org/10.15837/ijccc.2015.6.2078

[51] Tzeng, G.-H.; Huang, J.-J. (2011). Multiple Attribute Decision Making, New York: Chapman and Hall/CRC, 2011.
https://doi.org/10.1201/b11032

[52] Urosevic, S.; Karabasevic, D.; Stanujkic, D.; Maksimovic, M. (2017). An Approach to Personnel Selection in The Tourism Industry Based on The SWARA and The WASPAS Methods, Economic Computation and Economic Cybernetics Studies Research, 51(1), 75-88, 2017.

[53] Van Laarhoven, P. J.; Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory, Fuzzy Sets and Systems, 11(3), 229-241, 1983.
https://doi.org/10.1016/S0165-0114(83)80082-7

[54] Veerabathiran, R.; Srinath, K. (2012). Application of the extent analysis method on fuzzy AHP, International Journal of Engineering Science and Technology, 4(7), 3472-3480, 2012.

[55] Yang, W.; Xu, K.; Lian, J.; Bin, L.; Ma, C. (2018). Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model, Journal of Environmental Management, 213, 440-450, 2019.
https://doi.org/10.1016/j.jenvman.2018.02.085

[56] Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8(3), 338-353, 1965.
https://doi.org/10.1016/S0019-9958(65)90241-X

[57] Zavadskas, E.; Kalibatas, D.; Kalibatiene, D. (2016a). A multi-attribute assessment using WASPAS for choosing an optimal indoor environment, Archives of Civil and Mechanical Engineering, 16(1), 76-85, 2016.
https://doi.org/10.1016/j.acme.2015.10.002

[58] Zavadskas, E. K.; Antucheviciene, J.; Saparauskas, J.; Turskis, Z. (2013). MCDM methods WASPAS and MULTIMOORA: Verification of robustness of methods when assessing alternative solutions, Economic Computation and Economic Cybernetics Studies and Research, 47(2), 5-20, 2013.

[59] Zavadskas, E. K.; Antucheviciene, J.; Turskis, Z.; Adeli, H. (2016b). Hybrid multiple-criteria decision-making methods: A review of applications in engineering, Scientia Iranica. Transaction A, Civil Engineering, 23(1), 1-20, 2016.
https://doi.org/10.24200/sci.2016.2093

[60] Zavadskas, E. K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. (2016c). Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues, Economic research- Ekonomska istraživanja, 29(1), 857-887, 2016.
https://doi.org/10.1080/1331677X.2016.1237302

[61] Zavadskas, E. K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K. M. (2016d). Development of TOPSIS method to solve complicated decision-making problems-An overview on developments from 2000 to 2015, International Journal of Information Technology and Decision Making, 15(03), 645-682, 2016.
https://doi.org/10.1142/S0219622016300019

[62] Zavadskas, E. K.; Turskis; Z.; Antucheviciene, J. (2015). Selecting a Contractor by Using a Novel Method for Multiple Attribute Analysis: Weighted Aggregated SumProduct Assessment with Grey Values (WASPAS-G), Studies in Informatics and Control, 24(2), 141-150, 2015.
https://doi.org/10.24846/v24i2y201502

[63] Zavadskas, E. K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment, Elektronika ir Elektrotechnika, 122(6), 3-6, 2012.
https://doi.org/10.5755/j01.eee.122.6.1810

[64] Zhao, H.; Yao, L.; Mei, G.; Liu, T.; Ning, Y. (2017). A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map, Entropy, 19(8), 396, 2017.
https://doi.org/10.3390/e19080396
Published
2020-08-30
How to Cite
CHANDRAWATI, T. Brenda; RATNA, Anak Agung Putri; SARI, Riri Fitri. Path Selection using Fuzzy Weight Aggregated Sum Product Assessment. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 15, n. 5, aug. 2020. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3978>. Date accessed: 28 sep. 2020. doi: https://doi.org/10.15837/ijccc.2020.5.3978.