Grey Wolf Optimizer-Based Approaches to Path Planning and Fuzzy Logic-based Tracking Control for Mobile Robots

Authors

  • Radu-Emil Precup Politehnica University of Timisoara, Bd. V. Parvan 2, 300223 Timisoara
  • Emil-Ioan Voisan Politehnica University of Timisoara, Bd. V. Parvan 2, 300223 Timisoara
  • Emil M. Petriu University of Ottawa, 800 King Edward, Ottawa, Ontario, K1N 6N5
  • Marius L. Tomescu Aurel Vlaicu University of Arad, Str. Elena Dragoi 2, 310330 Arad
  • Radu-Codrut David Politehnica University of Timisoara, Bd. V. Parvan 2, 300223 Timisoara
  • Alexandra-Iulia Szedlak-Stinean Politehnica University of Timisoara, Bd. V. Parvan 2, 300223 Timisoara
  • Raul-Cristian Roman Politehnica University of Timisoara, Bd. V. Parvan 2, 300223 Timisoara

Keywords:

Grey Wolf Optimizer, Proportional-Integral-fuzzy control, path planning, tracking control

Abstract

This paper proposes two applications of Grey Wolf Optimizer (GWO) algorithms to a path planning (PaPl) problem and a Proportional-Integral (PI)-fuzzy controller tuning problem. Both optimization problems solved by GWO algorithms are explained in detail. An off-line GWO-based PaPl approach for Nonholonomic Wheeled Mobile Robots (NWMRs) in static environments is proposed. Once the PaPl problem is solved resulting in the reference trajectory of the robots, the paper also suggests a GWO-based approach to tune cost-effective PI-fuzzy controllers in tracking control problem for NWMRs. The experimental results are demonstrated through simple multiagent settings conducted on the nRobotic platform developed at the Politehnica University of Timisoara, Romania, and they prove both the effectiveness of the two GWO-based approaches and major performance improvement.

References

Abed-alguni, B.H. (2019). Island-based cuckoo search with highly disruptive polynomial mutation, International Journal of Artificial Intelligence, 17(1), 57-82, 2019.

Ajeil, F.H.; Ibraheem, K.I.; Sahib, M.A.; Humaidi, A.J. (2019). Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm, Applied Soft Computing, 89, paper 106076, 2020. https://doi.org/10.1016/j.asoc.2020.106076

Albu, A.; Precup, R.-E.; Teban, T.-A. (2017). Results and challenges of artificial neural networks used for decision-making in medical applications, Facta Universitatis, Series: Mechanical Engineering, 17(4), 285-308, 2019. https://doi.org/10.22190/FUME190327035A

Alvarez Gil, R.P.; Johanyák, Z.C.; Kovács, T. (2018). Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation, International Journal of Artificial Intelligence, 16(1), 20-40, 2018.

Andoga, R.; Fözö, L.; Kovács, R.; Beneda, K.; Moravec, T.; Schreiner, M. (2019). RRobust control of small turbojet engines, Machines, 7(3), 1-14, 2019. https://doi.org/10.3390/machines7010003

Angelov, P.; Lughofer, E. (2008). Data-driven evolving fuzzy systems using eTS and FLEXFIS: Comparative analysis, International Journal of General Systems, 37(1), 45-67, 2008. https://doi.org/10.1080/03081070701500059

Badica, A.; Badica, C.; Ivanovic, M.; Danciulescu, D. (2018). Multi-agent modelling and simulation of graph-based predator-prey dynamic systems: A BDI approach, Expert Systems, 35(5), e12263, 2018. https://doi.org/10.1111/exsy.12263

Baranyi, P.; Korondi, P.; Patton, R.J.; Hashimoto, H. (2004). Trade-off between approximation accuracy and complexity for TS fuzzy models, Asian Journal of Control, 6(1), 21-33, 2004. https://doi.org/10.1111/j.1934-6093.2004.tb00181.x

Blažic, S. (2014). On periodic control laws for mobile robots, IEEE Transactions on Industrial Electronics, 61(7), 3660-3670, 2014. https://doi.org/10.1109/TIE.2013.2287222

Chwa, D.K. (2012). Fuzzy adaptive tracking control of wheeled mobile robots with statedependent kinematic and dynamic disturbances, IEEE Transactions on Fuzzy Systems, 20(3), 587-593, 2012. https://doi.org/10.1109/TFUZZ.2011.2176738

Das, P.K.; Behera, H.S.; Jena, P.K.; Panigrahi, B.K. (2016). Multi-robot path planning in a dynamic environment using improved gravitational search algorithm, Journal of Electrical Systems and Information Technology, 3(2), 295-313, 2016. https://doi.org/10.1016/j.jesit.2015.12.003

Das, P.K.; Behera, H.S.; Jena, P.K.; Panigrahi, B.K. (2016). A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning, Swarm and Evolutionary Computation, 28, 14-28, 2016. https://doi.org/10.1016/j.swevo.2015.10.011

David, R.-C.; Precup R.-E.; Preitl, S.; Szedlak-Stinean, A.-I.; Fedorovici, L.-O. (2018). Application of grey wolf optimization in fuzzy controller tuning for servo systems, In JTan, Y. (ed.), Swarm Intelligence - Volume 2: Innovation, New Algorithms and Methods, 363-387, IET Digital Library, London, 363-387, 2018. https://doi.org/10.1049/PBCE119G_ch13

Dewangan, R.K.; Shukla, A.; Godfrey, W.W. (2019). Three dimensional path planning using grey wolf optimizer for UAVs, Applied Intelligence, 49(6), 2201-2217, 2019. https://doi.org/10.1007/s10489-018-1384-y

Dragoicea, M.; Dumitrache, I.; Constantin, N. (2015). Adaptive neural control for mobile robots autonomous navigation, CoRR abs/1512.03351, 2015.

Dzitac, I.; Filip, F.G.; Manolescu, M.J. (2017). Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017. https://doi.org/10.15837/ijccc.2017.6.3111

Fierro, R.; and Lewis, F.L. (1998). Control of a nonholonomic mobile robot using neural networks, IEEE Transactions on Neural Networks, 9(4), 589-600, 1998. https://doi.org/10.1109/72.701173

Galichet, S.; Foulloy, L. (1995). Fuzzy controllers: synthesis and equivalences, IEEE Transactions on Fuzzy Systems, 3(2), 140-148, 1995. https://doi.org/10.1109/91.388169

Ge, F.-W.; Li, K.; Xu, W.-S.; Wang, Y. (2019). Path planning of UAV for oilfield inspection based on improved grey wolf optimization algorithm, Proceedings of 2019 Chinese Control and Decision Conference, Nanchang, China, 1-6, 2019. https://doi.org/10.1109/CCDC.2019.8833455

Ge, S.S.; Wang, Z.P.; Lee, T.H. (2003). Adaptive stabilization of uncertain nonholonomic systems by state and output feedback, Automatica, 39(8), 1451-1460, 2003. https://doi.org/10.1016/S0005-1098(03)00119-5

Haidegger, T.; Kovács, L.; Preitl, S.; Precup, R.-E.; Benyó, B.; Benyó, Z. (2011). Controller design solutions for long distance telesurgical applications, International Journal of Artificial Intelligence, 6(S11), 48-71, 2011.

Hidalgo-Paniagua, A.; Vega-Rodríguez, M.A.; Nieves Pavón, J.F. (2017). Solving the multiobjective path planning problem in mobile robotics with a firefly-based approach, Soft Computing, 21(4), 949-964, 2017. https://doi.org/10.1007/s00500-015-1825-z

Huang, J.S.; Wen, C.Y.; Wang, W.; Jiang, Z.-P. (2014). Adaptive output feedback tracking control of a nonholonomic mobile robot, Automatica, 50(3), 821-831, 2014. https://doi.org/10.1016/j.automatica.2013.12.036

Jiang, Z.-P; Nijmeijer, H. (1997). Tracking control of mobile robots: a case study in backstepping, Automatica, 33(7), 1393-1399, 1997. https://doi.org/10.1016/S0005-1098(97)00055-1

Kolmanovsky, H.; McClamroch, N.H. (1995). Developments in nonholonomic control systems, IEEE Control Systems Magazine, 15(6), 20-36, 1995. https://doi.org/10.1109/37.476384

La Fe-Perdomo, I.; Beruvides, G.; Quiza, R.; Haber, R.; Rivas, M. (2019). Automatic selection of optimal parameters based on simple soft-computing methods: A case study of micromilling processes, IEEE Transactions on Industrial Informatics, 15(2), 800-811, 2019. https://doi.org/10.1109/TII.2018.2816971

Lal, D.K.; Barisal, A.K.; Tripathy, M. (2016). Grey wolf optimizer algorithm based fuzzy PID controller for AGC of multi-area power system with TCPS, Procedia Computer Science, 92, 99- 105, 2017. https://doi.org/10.1016/j.procs.2016.07.329

Lamini, C.; Benhlima, S.; Elbekri, E. (2018). Genetic algorithm based approach for autonomous mobile robot path planning, Procedia Computer Science, 127, 180-189, 2018. https://doi.org/10.1016/j.procs.2018.01.113

Lee, J.S.; Kim. D.-W. (2016). An effective initialization method for genetic algorithm-based robot path planning using a directed acyclic graph, Information Sciences, 332, 1-18, 2016. https://doi.org/10.1016/j.ins.2015.11.004

Li, Z.J.; Deng, J. Lu, R.Q.; Xu, Y.; Bai, J.J.; Su, C.-Y. (2016). Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach, IEEE Transactions on Systems, Man, and Cybernetics Systems, 46(6), 740-749, 2016. https://doi.org/10.1109/TSMC.2015.2465352

Lim, R.S.; La, H.M.; Sheng, W. (2014). A robotic crack inspection and mapping system for bridge deck maintenance, IEEE Transactions on Automation Science and Engineering, 11(2), 367-378, 2014. https://doi.org/10.1109/TASE.2013.2294687

Liu, H.; Dzitac, I.; Guo, S. (2018). Reduction of conditional factors in causal analysis, International Journal of Computers Communications & Control, 13(3), 383-390, 2018. https://doi.org/10.15837/ijccc.2018.3.3252

Liu, J.H.; Yang, J.G.; Liu, H.P.; Tian, X.J.; Gao, M. (2017). An improved ant colony algorithm for robot path planning, Soft Computing, 21(9), 5829-5839, 2017. https://doi.org/10.1007/s00500-016-2161-7

Low, E.S.; Ong. P.; Cheah, K.C. (2019). Solving the optimal path planning of a mobile robot using improved Q-learning, Robotics and Autonomous Systems, 115, 143-161, 2017. https://doi.org/10.1016/j.robot.2019.02.013

Ma, Y.; Wang, H.; Xie, Y.; Guo, M. (2014). Path planning for multiple mobile robots under double-warehouse, Information Sciences, 278, 357-379, 2014. https://doi.org/10.1016/j.ins.2014.03.058

Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. (2016). Heuristic approaches in robot path planning: A survey, Robotics and Autonomous Systems, 86, 13-28, 2016. https://doi.org/10.1016/j.robot.2016.08.001

Mac, T.T.; Copot C.; Tran, D.T.; De Keyser, R. (2017). A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization, Applied Soft Computing, 59, 68-76, 2017. https://doi.org/10.1016/j.asoc.2017.05.012

Melin, P.; Astudillo, L.; Castillo, O.; Valdez, F.; Garcia, M. (2013). Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm, Expert Systems with Applications, 40(8), 3185-3195, 2013. https://doi.org/10.1016/j.eswa.2012.12.032

Michail, K.; Deliparaschos, K.M.; Tzafestas, S.G.; Zolotas, A.G. (2016). AI-based actuator/sensor fault detection with low computational cost for industrial applications, IEEE Transactions on Control Systems Technology, 24(1), 293-301, 2016. https://doi.org/10.1109/TCST.2015.2422794

Mirjalili, S.; Mirjalili, S.M.; Lewis, A. (2014). Grey wolf optimizer, Advanced Engineering Software, 69, 46-61, 2014. https://doi.org/10.1016/j.advengsoft.2013.12.007

Mitic, M., Vukovic, N., Petrovic, M., and Miljkovic, Z. (2018). Chaotic metaheuristic algorithms for learning and reproduction of robot motion trajectories, Neural Computing and Applications, 30(4), 1065-1083, 2018. https://doi.org/10.1007/s00521-016-2717-6

Mls, K.; Cimler, R.; Vašcák, J.; Puheim, M. (2017). Interactive evolutionary optimization of fuzzy cognitive maps, Neurocomputing, 232, 58-68, 2017. https://doi.org/10.1016/j.neucom.2016.10.068

Mohanta, J. C.; Keshari, A. (2019). A knowledge based fuzzy-probabilistic roadmap method for mobile robot navigation, Applied Soft Computing, 79, 391-409, 2019. https://doi.org/10.1016/j.asoc.2019.03.055

Nazarahari, M.; Khanmirza, E.; Doostie, S. (2019). Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm, Expert Systems with Applications, 115, 106-120, 2019. https://doi.org/10.1016/j.eswa.2018.08.008

Nikoobin, A.; Habibollahi, A.; Dideba, A. (2018). Lyapunov-based nonlinear disturbance observer for n-links flexible joint robot manipulators. Control Engineering and Applied Informatics, 20(2), 22-32, 2018.

Noshadi, A.; Shi, J.; Lee, W.S.; Shi, P.; Kalam, A. (2016). Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system, Neural Computing and Applications, 27(5), 2031-2046, 2016. https://doi.org/10.1007/s00521-015-1996-7

Ojha, V.; Abraham, A.; and Snášel, V., (2019). Heuristic design of fuzzy inference systems: A review of three decades of research, Engineering Applications of Artificial Intelligence, 85, 845- 864, 2019. https://doi.org/10.1016/j.engappai.2019.08.010

Osaba, E.; Del Ser, J.; Sadollah, A.; Bilbao, M.N. Camacho, D. (2018). A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem, Applied Soft Computing, 71, 277-290, 2018. https://doi.org/10.1016/j.asoc.2018.06.047

Park, B.S.; Yoo, S.J.; Park; J.B.; Choi, Y.H. (2010). A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots, IEEE Transactions on Control Systems Technology, 18(5), 1199-1206, 2010. https://doi.org/10.1109/TCST.2009.2034639

Patle, B.K.; Parhi, D.R.K.; Jagadeesh, A.; Kashyap, S.K. (2019). Application of probability to enhance the performance of fuzzy based mobile robot navigation, Applied Soft Computing, 75, 265-283, 2019. https://doi.org/10.1016/j.asoc.2018.11.026

Petrovic, G., Mihajlovic, J.; Cojbašic, Ž.; Madic, M.; Marinkovic, D. (2019). Comparison of three fuzzy MCDM methods for solving the supplier selection problem, Facta Universitatis, Series: Mechanical Engineering, 17(3), 455-469, 2019. https://doi.org/10.22190/FUME190420039P

Pozna, C.; Precup, R.-E. (2018). An approach to the design of nonlinear state-space control systems, Studies in Informatics and Control, 27(1), 5-14, 2018. https://doi.org/10.24846/v27i1y201801

Precup, R.-E.; David, R.-C.; Petriu, E.M.; Szedlak-Stinean, A.-I.; Bojan-Dragos, C.-A. (2016). Grey wolf optimizer-based approach to the tuning of PI-fuzzy controllers with a reduced process parametric sensitivity, IFAC-Papers Online, 48, 55-60, 2016. https://doi.org/10.1016/j.ifacol.2016.07.089

Precup, R.-E.; David, R.-C.; Petriu, E.M. (2017). Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity, IEEE Transactions on Industrial Electronics, 64 (1), 527-534, 2017. https://doi.org/10.1109/TIE.2016.2607698

Precup, R.-E.; David, R.-C.; Szedlak-Stinean, A.-I.; Petriu, E.M.; Dragan, F. (2017). An easily understandable grey wolf optimizer and its application to fuzzy controller tuning, Algorithms, 10(2), 1-15, 2017. https://doi.org/10.3390/a10020068

Precup, R.-E.; Petriu, E.M.; Fedorovici, L.-O.; Radac, M.-B.; Dragan, F. (2014). Multi-robot charged system search-based optimal path planning in static environments, Proceedings of 2014 IEEE Multi-Conference on Systems and Control, Antibes, France, 1912-1917, 2014. https://doi.org/10.1109/ISIC.2014.6967643

Precup, R.-E.; Petriu, E.M.; Radac, M.-B.; Voisan, E.-I.; Dragan, F. (2015). Adaptive charged system search approach to path planning for multiple mobile robots, IFAC-PapersOnLine, 48(10), 294-299, 2015. https://doi.org/10.1016/j.ifacol.2015.08.147

Precup, R.-E.; Preitl, S.; Balas, M.; Balas, V. (2004). Fuzzy controllers for tire slip control in anti-lock braking systems, Proceedings of 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 3, 1317-1322, 2004.

Precup, R.-E.; Preitl, S.; Szabo, C.; Korondi, P.; Szemes, P. (2005). On some low-cost tracking controllers for mobile robots, Control and Intelligent Systems, 33(1), 1-12, 2005. https://doi.org/10.2316/Journal.201.2005.1.201-1534

Precup, R.-E.; Tomescu, M.-L.; Dragos, C.-A. (2014). Stabilization of Rössler chaotic dynamical system using fuzzy logic control algorithm, International Journal of General Systems, 43(5), 413-433, 2014. https://doi.org/10.1080/03081079.2014.893299

Preitl, S.; Precup, R.-E. (1999). An extension of tuning relations after symmetrical optimum method for PI and PID controllers, Automatica, 35(10), 1731-1736, 1999. https://doi.org/10.1016/S0005-1098(99)00091-6

Purcaru, C.; Precup, R.-E.; Iercan, D.; Fedorovici L.-O.; David, R.-C.; Dragan, F. (2013). Optimal robot path planning using gravitational search algorithm, International Journal of Artificial Intelligence, 10(S13), 1-20, 2013.

Purcaru, C.; Precup, R.-E.; Iercan, D.; Fedorovici, L.-O.; Petriu, E.M.; Voisan, E.-I. (2013). Multi-robot GSA- and PSO-based optimal path planning in static environments, Proceedings of 9th International Workshop on Robot Motion and Control, Wasowo, Poland, 197-202, 2013. https://doi.org/10.1109/RoMoCo.2013.6614608

Radmanesh, M.; Kumar, M.; Sarim. M. (2018). Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment, Aerospace Science and Technology, 77, 168-179, 2018. https://doi.org/10.1016/j.ast.2018.02.031

Rao, A.M.; Ramji, K.; Kumar, T.N. (2018). Intelligent navigation of mobile robot using grey wolf colony optimization, Materials Today: Proceedings, 5(9), 19116-19125, 2018. https://doi.org/10.1016/j.matpr.2018.06.265

Roman, R.-C.; Precup, R.-E.; Bojan-Dragos, C.-A.; Szedlak-Stinean, A.-I. (2019). Combined model-free adaptive control with fuzzy component by virtual reference feedback tuning for tower crane systems, Procedia Computer Science, 162, 267-274, 2019. https://doi.org/10.1016/j.procs.2019.11.284

Roman, R.-C.; Precup, R.-E.; Petriu, E.M.; Dragan, F. (2019). Combination of data-driven active disturbance rejection and Takagi-Sugeno fuzzy control with experimental validation on tower crane systems, Energies, 12(8), 1548, 1-19, 2019. https://doi.org/10.3390/en12081548

Rotariu, C.; Pasarica, A.; Andruseac, G.; Costin, H.; Nemescu, D. (2014). Automatic analysis of the fetal heart rate variability and uterine contractions, Proceedings of 8th International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 1-6, 2014. https://doi.org/10.1109/ICEPE.2014.6969970

Saeed, A.A.M.; Danciulescu, D. (2018). Modern interfaces for knowledge representation and processing systems based on markup technologies, International Journal of Computers Communications & Control, 13(1), 117-128, 2018. https://doi.org/10.15837/ijccc.2018.1.3149

Sahoo, B.P.; Panda, S. (2018). Improved grey wolf optimization technique for fuzzy aided PID controller design for power system frequency control, Sustainable Energy, Grids and Networks, 16, 278-299, 2018. https://doi.org/10.1016/j.segan.2018.09.006

Tanner, H.G.; Kyriakopoulos, K.J. (2000). Discontinuous backstepping for stabilization of nonholonomic mobile robots, Proceedings of 2002 IEEE Conference on Robotics and Automation, Washington, DC, USA, 3948-3953, 2000.

Yang, Y.J.; Pan, J.; Wan, W.W. (2019). Survey of optimal motion planning, IET Cyber-systems Robotics, 1(1), 13-19, 2019. https://doi.org/10.1049/iet-csr.2018.0003

Zafar, M.N.; Mohanta, J.C. (2018). Methodology for path planning and optimization of mobile robots: A review, Procedia Computer Science, 133, 141-152, 2018. https://doi.org/10.1016/j.procs.2018.07.018

Zhang, W.B.; Gong; X.P.; Han, G.; Zhao, Y.T. (2017). An improved ant colony algorithm for path planning in one scenic area with many spots, IEEE Access, 5, 13260-13269, 2017. https://doi.org/10.1109/ACCESS.2017.2723892

Zohar, I.; Ailon, A.; Rabinovici, R. (2011). Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: Trajectory tracking and related application, Robotics and Autonomous Systems, 59(6), 343-353, 2011. https://doi.org/10.1016/j.robot.2010.12.001

Published

2020-04-21

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.