Proposed Fuzzy Real-Time HaPticS Protocol Carrying Haptic Data and Multisensory Streams

Abstract

Sensory and haptic data transfers to critical real-time applications over the Internet require better than best effort transport, strict timely and reliable ordered deliveries. Multi-sensory applications usually include video and audio streams with real-time control and sensory data, which aggravate and compress within real-time flows. Such real-time are vulnerable to synchronization to synchronization problems, if combined with poor Internet links. Apart from the use of differentiated QoS and MPLS services, several haptic transport protocols have been proposed to confront such issues, focusing on minimizing flows rate disruption while maintaining a steady transmission rate at the sender. Nevertheless, these protocols fail to cope with network variations and queuing delays posed by the Internet routers.
This paper proposes a new haptic protocol that tries to alleviate such inadequacies using three different metrics: mean frame delay, jitter and frame loss calculated at the receiver end and propagated to the sender. In order to dynamically adjust flow rate in a fuzzy controlled manners, the proposed protocol includes a fuzzy controller to its protocol structure. The proposed FRTPS protocol (Fuzzy Real-Time haPticS protocol), utilizes crisp inputs into a fuzzification process followed by fuzzy control rules in order to calculate a crisp level output service class, denoted as Service Rate Level (SRL). The experimental results of FRTPS over RTP show that FRTPS outperforms RTP in cases of congestion incidents, out of order deliveries and goodput.

Author Biographies

Sotirios Kontogiannis, Dept. of Mathematics, University of Ioannina
Scientific staff, Dept. of Mathematics, University of Ioannina
George Kokkonis, Dept. of Business Administration, University of Western Macedonia
Assistant Prof., Dept. of Business Administration, University of Western Macedonia

References

[1] Al-Saadi, R.; Armitage, G.; But, J.; Branch, P. (2019). A Survey of Delay-Based and Hybrid TCP Congestion Control Algorithms, IEEE Communications Surveys Tutorials, 21(4), 3609- 3638, 2019.
https://doi.org/10.1109/COMST.2019.2904994

[2] Akács, Á.; Kovács, L.; Rudas, I. J.; Precup, R. E.; Haidegger, T. (2015). Models for force control in telesurgical robot systems, Acta Polytechnica Hungarica, 12(8), 95-114, ISSN: 1785-8860, 2015.

[3] Antonakoglou, K.; Xu, X.; Steinbach, E.; Mahmoodi, T.; Dohler, M. (2018). Toward Haptic Communications Over the 5G Tactile Internet, IEEE Communications, 20(4), 3034-3059, 2018.
https://doi.org/10.1109/COMST.2018.2851452

[4] Attiya, G. (2012). New Strategy for Congestion Control based on Dynamic Adjustment of Congestion Window, International Journal of Computer Science Issues, 9(2), 368-377, 2012.

[5] Awang N. S.; Alubady, R.; Abduladeem, K. W. (2017). Simulated performance of TCP, SCTP, DCCP and UDP protocols over 4G network, The 8th International Conference on Advances in Information Technology, 111(2017), 2-7, 2017.
https://doi.org/10.1016/j.procs.2017.06.002

[6] Benítez-Pérez, H.; Ortega-Arjona, J.; Esquivel-Flores, O.; Rojas-Vargas, J. A.; Álvarez-Cid, A. (2016). A Fuzzy Networked Control System Following Frequency Transmission Strategy, International Journal of Computers Communications & Control, 11(1), 11-25, 2016.
https://doi.org/10.15837/ijccc.2016.1.2158

[7] Bermejo, C.; Hui, P. (2017). A survey on haptic technologies for mobile augmented reality, arXiv:1709.00698 [cs]

[8] Boukerche, A.; Maamar, H.; Hossain, A. (2008). An efficient hybrid multicast transport protocol for collaborative virtual environment with networked haptic, Multimedia Systems, 13(4), 78-83, 2008.
https://doi.org/10.1007/s00530-007-0104-y

[9] Chatterjee, A.; Chatterjee, R.; Matsuno, F.; Endo, T. (2008). Augmented Stable Fuzzy Control for Flexible Robotic Arm Using LMI Approach and Neuro-Fuzzy State Space Modeling, IEEE Transactions on Industrial Electronics, 55(3), 1256-1270, 2008.
https://doi.org/10.1109/TIE.2007.896439

[10] Chowdhury, I.S.; Lahiry, J.; Hasan, S. F. (2009). Performance analysis of Datagram Congestion Control Protocol (DCCP), 12th International Conference on Computers and Information Technology, 454-459, 2009.
https://doi.org/10.1109/ICCIT.2009.5407282

[11] Clark, A.; Qu, Q. (2012). RTCP XR Packet Delay Variation, [Online]. Available: https://ietf.org/rfc/rfc6798.html.

[12] Dapeng, W.; Hou, Y.T.; Wenwu, Z.; Ya-Qin, Z.; Peha, J.M. (2001). Streaming video over the Internet: approaches and directions, IEEE Transactions on Circuits and Systems for Video Technology, 11(3), 282-300, 2001.
https://doi.org/10.1109/76.911156

[13] Dodeller, S.; Georganas, N. D. (2004) Transport Layer Protocols for Telehaptics Update Messages, Proceedings of the 22nd Biennial Symposium on Communications, 1(1), 112-118, 2004.

[14] Dzitac, I.; Filip, F.G.; Manolescu, M.J. (2017). Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017.
https://doi.org/10.15837/ijccc.2017.6.3111

[15] Even, R.; Xia, F. (2012). RTP Control Protocol (RTCP) Extension for a Third-Party Loss Report, [Online]. Available: https://tools.ietf.org/html/rfc6642. Accessed on: Mar. 2014

[16] Floyd, S.; Handley, M.; Kohler, E. (2006). Datagram Congestion Control Protocol (DCCP), [Online]. Available: https://tools.ietf.org/html/rfc4340, 2006.
https://doi.org/10.17487/rfc4336

[17] Gagolewski, M.; Caha, J. (2012). A Guide to the FuzzyNumbers Package for R, [Online]. Available: https://cran.r-project.org/web/packages/FuzzyNumbers/vignettes/FuzzyNumbersTutorial.pdf. Accessed on: Feb. 2016.

[18] Ghassan, A. A.; Mahamod, I.; Kasmiran, J. (2011). A Survey on Performance of Congestion Control Mechanisms for Standard TCP Versions, Australian Journal of Basic and Applied Sciences, 5(12), 1345-1352, ISSN: 1991-8178, 2011.

[19] Gil, R.P.A.; Johanyak, Z.C.; Kovacs, P. (2018). Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation, International Journal of Artificial Intelligence, 16(1), 20-40, 2018.

[20] Gupta, R.; Tanwar, S.; Tyagi, S.; Kumar, N. (2019). Tactile-Internet-Based Telesurgery System for Healthcare 4.0: An Architecture, Research Challenges, and Future Directions, IEEE Network, 33(6), 22-29, 2019.
https://doi.org/10.1109/MNET.001.1900063

[21] Ha, J.S.; Kim, S.-T.; Koh, S. J. (2005). Performance Comparison of SCTP and TCP over Linux Platform, Advances in Intelligent Computing, 396-404, 2005.
https://doi.org/10.1007/11538356_41

[22] Hemminger, S. (2005). Network emulation with Netem, [Online]. Available: http://developer.osdl.org/shemminger/netem, Accessed on Jun. 2016.

[23] Ickin, S.; Wac, K.; Fiedler, M.; Janowski, L.; Hong, J.-H.; Dey, A. K. (2012). Factors influencing quality of experience of commonly used mobile applications, IEEE Communications Magazine, 50(4), 48-56, 2012.
https://doi.org/10.1109/MCOM.2012.6178833

[24] iPerf, [Online]. Available: https://iperf.fr/iperf-doc.php, Accessed on May 2016.

[25] Jacobson, V. (1988). Congestion avoidance and control, Symposium proceedings on Communications architectures and protocols, 314-329, 1988.
https://doi.org/10.1145/52325.52356

[26] Jacobson, V. ; Frederick, R. ; Casner, S. ; Schulzrinne, H. (2003). RTP: A Transport Protocol for Real-Time Applications, [Online]. Available: https://tools.ietf.org/html/rfc3550.

[27] Jurgelionis, A.; Laulajainen, J-P.; Hirvonen, M.; Wang, A. I. (2011). An Empirical Study of NetEm Network Emulation Functionalities, Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), 1-6, 2011.
https://doi.org/10.1109/ICCCN.2011.6005933

[28] Kawazoe, A.; Luca, M. D.; Visell, Y. (2019). Tactile Echoes: A Wearable System for Tactile Augmentation of Objects, IEEE World Haptics Conference (WHC), 359-364, 2019.
https://doi.org/10.1109/WHC.2019.8816099

[29] Khalid, M.; Said, H.; Asad, A.; Abubakr, E.S. (2018). Studying the TCP Flow and Congestion Control Mechanisms Impact on Internet Environment, IJCSIS, 16(11), 174-179, 2018.

[30] Kokkonis, G.; Kontogiannis, S.; Tomtsis, D. (2016). An open source architecture of a wireless body area network in a medical environment, International Journal of Digital Information and Wireless Communications, 6(2), 63-78, 2016.
https://doi.org/10.17781/P001975

[31] Kokkonis, G.; Psannis, K.; Roumeliotis, M.; Kontogiannis, S. (2012). A Survey of Transport Protocols for Haptic Applications, 16th Panhellenic Conference on Informatics, 192-197, 2012.
https://doi.org/10.1109/PCi.2012.54

[32] Kovács, L. ; Haidegger, T. ; Rudas, I. (2013). Surgery from a distance-Application of intelligent control for telemedicine, IEEE 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 125-129, 2013.
https://doi.org/10.1109/SAMI.2013.6480959

[33] Kukolj, D. (2002). Design of adaptive Takagi-Sugeno-Kang fuzzy models, Applied Soft Computing, 2(2), 89-103, 2002.
https://doi.org/10.1016/S1568-4946(02)00032-7

[34] Li, P.; Lu, W.; Sun, Z. (2005). Transport layer protocol reconfiguration for network-based robot control system, 1049-1053, 2005.

[35] Linux Advanced Routing & Traffic Control HOWTO, [Online]. Available: https://lartc.org/, Accessed on Sep. 2011.

[36] Madhuri, D.; Reddy, P.C. (2016). Performance comparison of TCP, UDP and SCTP in a wired network, International Conference on Communication and Electronics Systems (ICCES), 1-6, 2016.
https://doi.org/10.1109/CESYS.2016.7889934

[37] Masse, R. A. C.; Ochoa-Zezzatti, A.; García, V.; Mejía, J.; Gonzalez, S. (2019). Application of IoT with haptics interface in the smart manufacturing industry, International Journal of Combinatorial Optimization Problems and Informatics, 10(2), 17-25, 2019.

[38] Mauve, M.; Hilt, V.; Kuhmunch, C.; Effelsberg, W. (2001). RTP/I-toward a common application level protocol for distributed interactive media, IEEE Transactions on Multimedia, 3(1), 151-161, 2001.
https://doi.org/10.1109/6046.909602

[39] Molia, H. K.; Kothari, Amit D. (2019). Fuzzy Logic Systems for Transmission Control Protocol, Proceedings of the 2nd International Conference on Communication, Devices and Computing, 553-565, 2019.
https://doi.org/10.1007/978-981-15-0829-5_53

[40] Morton, A.; Claise, B. (2009). Packet Delay Variation Applicability Statement, [Online]. Available: https://tools.ietf.org/html/rfc5481.
https://doi.org/10.17487/rfc5481

[41] Nagy, T. D.; Haidegger, T. (2019). A DVRK-based Framework for Surgical Subtask Automation, Acta Polytechnica Hungarica, 16(8), 61-78, 2019.
https://doi.org/10.12700/APH.16.8.2019.8.5

[42] Osman, H. A.; Eid, M.; Saddik, A. E. (2008). Evaluating ALPHAN: A Communication Protocol for Haptic Interaction, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 361-366, 2008.
https://doi.org/10.1109/HAPTICS.2008.4479972

[43] OTT: Beyond Entertainment Consumer Survey Report (2017). [Online]. Available: https://www.conviva.com/research/ott-beyond-entertainment/. Accessed on: Sep. 2019.

[44] Paulo R. (2013). Accenture video-over-internet-consumer-survey-2013, [Online]. Available: https://www.slideshare.net/ratinecas/accenture-videooverinternetconsumersurvey2013. Accessed on: May 2018.

[45] Phung, M. D.; Van Thi Nguyen, T.; Quach, C. H.; Tran, Quang Vinh (2010). Development of a tele-guidance system with fuzzy-based secondary controller, 11th International Conference on Control Automation Robotics Vision, 2010.
https://doi.org/10.1109/ICARCV.2010.5707338

[46] Precup, R. E.; Tomescu, M. L.; Dragos, C. A. (2014). Stabilization of Rössler chaotic dynamical system using fuzzy logic control algorithm, International Journal of General Systems, 43(5), 413-433, 2014.
https://doi.org/10.1080/03081079.2014.893299

[47] Reiter, U.; Brunnström, K.; De Moor, K. et al. (2014). Factors Influencing Quality of Experience Quality of Experience: Advanced Concepts, Applications and Methods 55-72, 2014.
https://doi.org/10.1007/978-3-319-02681-7_4

[48] RTPLIB, [Online]. Available: https://research.edm.uhasselt.be/jori/page/CS/Jrtplib.html, Accessed Oct. 2018

[49] Shirmohammadi, S.; Georganas, N.D. (2000). Collaborating in 3D virtual environments: a synchronous architecture, Proceedings IEEE 9th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2000), 35-42, 2000.

[50] Skurowski, P.; Gruca, A. (2008). SMPDV - A new jitter estimator proposal, Studia Informatica, 29(81), 1-16, 2008.

[51] Tabash, I.; Beg, M.S.; Ahmad, N. (2013). Improving TCP Performance based on Fuzzy-Logic for Mobile Ad hoc Networks, International Journal of Computer Applications, 78(2), 11-16, 2013.
https://doi.org/10.5120/13460-0479

[52] Takács, Á.; Rudas, I.; Bösl, D.; Haidegger, T. (2018). Highly Automated Vehicles and Self-Driving Cars [Industry Tutorial, IEEE Robotics Automation Magazine, 25(4), 106-112, 2018.
https://doi.org/10.1109/MRA.2018.2874301

[53] Takagi, T.; Sugeno, M. (1993). Fuzzy Identification of Systems and Its Applications to Modeling and Control, Readings in Fuzzy Sets for Intelligent Systems, 387-403, 1993.
https://doi.org/10.1016/B978-1-4832-1450-4.50045-6

[54] Taylor, T.; Schwarzbauer, H. J.; Kalla, M. et al. (2000). Stream Control Transmission Protocol, [Online]. Available: https://tools.ietf.org/html/rfc2960.

[55] Trang, S. Q. V.; Lochin, E. (2016). FLOWER, an innovative Fuzzy Lower-than-Best-Effort transport protocol, Computer Networks, 110, 18-30, 2016.
https://doi.org/10.1016/j.comnet.2016.09.008

[56] Uchimura, Y.; Ohnishi, K.; Yakoh, T. (2002). Bilateral robot system on the real time network structure, 7th International Workshop on Advanced Motion Control. Proceedings, 51(5), 63-68, 2002.

[57] Vilela R. J. (2016). The FuzzyLite Libraries for Fuzzy Logic Control, [Online]. Available: https://www.fuzzylite.com/. Accessed on: Sep. 2016.

[58] Wang, D.; Ohnishi, K.; Xu, W. (2020). Multimodal Haptic Display for Virtual Reality: A Survey, IEEE Transactions on Industrial Electronics, 67(1), 610-623, 2020
https://doi.org/10.1109/TIE.2019.2920602

[59] Wirz, R.; Ferre, M.; Marín, R.; Barrio, J. et al. (2008). Efficient Transport Protocol for Networked Haptics Applications, Haptics: Perception, Devices and Scenarios, Springer, 3-12, 2008.
https://doi.org/10.1007/978-3-540-69057-3_1

[60] Wirz, R.; Marin, R.; Ferre, M. et al. (2009). Bidirectional Transport Protocol for Teleoperated Robots, IEEE Transactions on Industrial Electronics, 56(9), 3772-3781, 2009.
https://doi.org/10.1109/TIE.2009.2025291
Published
2020-06-08
How to Cite
KONTOGIANNIS, Sotirios; KOKKONIS, George. Proposed Fuzzy Real-Time HaPticS Protocol Carrying Haptic Data and Multisensory Streams. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 15, n. 4, june 2020. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3842>. Date accessed: 23 oct. 2020. doi: https://doi.org/10.15837/ijccc.2020.4.3842.

Keywords

multi-sensorial, haptics, transport protocols, real-time protocols, communication networks, fuzzy logic based decisions