A Force/Position Hybrid Controller for Rehabilitation Robot

  • Jin Hua
  • Lile He
  • Zhiqiang Kang
  • Keding Yan

Abstract

The growing ageing population in China poses a huge demand for rehabilitation care, which can be satisfied by the latest robot technology. Focusing on the motion system of a six degrees-of-freedom (DOF) robot, this paper explores the relationship between the force, torque, velocity and the postures of the end effector and joint. Drawing on robot control theories, the existing manipulator force/position hybrid controllers were reviewed, and a force/position hybrid controller was designed for path planning of rehabilitation robot. Then, the robot was modelled on the Robot Operating System (ROS), using the Unified Robot Description Format (URDF) file and the MoveIt! Setup Assistant. Finally, our controller was tested in the ROS virtual simulation environment. The results show that our controller can facilitate and optimize the design of the path of rehabilitation robot.

References

[1] Baksys, B.; Kilikevicius, S.; Chadarovicius, A. (2012). Experimental investigation of vibra assembly with passive compliance, Mechanika, 17(6), 608-611, 2012.
https://doi.org/10.5755/j01.mech.17.6.1003

[2] Chang, J.; Wang, Y.Z.; Li, B. (2016). Accurate Operation Control Method Based on Hybrid Force/PositionAlgorithm for 7-DOF Manipulator, ROBOT, 38(5), 531-539, 2016.

[3] Hogan, N. (1985). Impedance control-An approach to manipulation. I - Theory. II - Implementation. III- Applications, Journal of Dynamic Systems Measurement & Control, 107(1), 1-24, 1985.
https://doi.org/10.1115/1.3140701

[4] Hu, L.Y.; Zhan, J.M.(2015). Studyon theorthogonalization forHybrid motion/force control and its application in aspheric surface polishing,International Journal of Advanced Manufacturing Technology, 77(5-8), 1259-1268, 2015.
https://doi.org/10.1007/s00170-014-6499-7

[5] Huang, H.; Gong, Z.M.; Chen,X.Q.; Zhou, L.(2002). Robotic grinding and polishing for turbine-vane overhaul, Journal of Materials Processing Technology, 127(2), 140-145, 2002.
https://doi.org/10.1016/S0924-0136(02)00114-0

[6] Huang, T.; Sun, L.N.; Wang, Z.H.; Yu, X.Y.; Chen, G.D. (2017). Hybrid Force/Position Control Method for Robotic Polishing Based onPassive Compliance Structure, ROBOT, 39(6), 776-785 and 794, 2017.

[7] Kilikevicius, S.; Baksys, B. (2011). Dynamic analysis of vibratory insertion process, Assembly Automation, 31(3), 275-283, 2011.
https://doi.org/10.1108/01445151111150613

[8] Li, Q.L.; Ye, T.M.(2009). Controlled assistance by an exoskeletal rehabilitation robot for upper limbs, Journal of Harbin Engineering University, 34(2), 166-177, 2009.

[9] Li, S.R.; Yin, H.Q.(2017). Adaptive position/force control for coordinated multiple flexiblejointmanipulators with time delay, Control Theory and Applications, 34(9), 1208-1214, 2017.

[10] Liu, Y.Q.; Tao, R.; Ding, F.; Zhang, J.X.; Chen, Y.J.; Liu, X.(2018). Research on vision servo 7DOF manipulator simulationbased on ROS and EtherCAT,Journal of natural science of Heilongjiang university, 35(1), 94-101, 2018.

[11] Lu, L.; Xie, S.X. (2018). Construction method of robot simulation model in ROS environment. Modern Electronics Technique, 41(7), 102-105, 110, 2018.

[12] Pan, L.Z.; Song, A.G.(2012). Real-time Safety Control of Upper-limb Rehabilitation Robot, ROBOT, 34(2), 197-210, 2012.
https://doi.org/10.3724/SP.J.1218.2012.00197

[13] Qi, Z.G.; Huang, P.F.; Liu, Z.X.; Han, D.(2019). Research on path planning method of spatial redundant manipulator. ActaAutomaticaSinica, 45(6), 1103-1110, 2019.

[14] Qin, H.Q.; Xiong, Q.Y.; Shi, X.(2014). Simulation research of force control system for manipulator based on Matlab, Computer Engineering and Applications, 50(12), 242-246, 2014.

[15] Roy, N.; Newman, P.; Srinivasa, S. (2012). Rigidity maintenance control for multi-robot systems. Robotics: Science & Systems VIII, MIT Press, 2012.

[16] Singh, H.P.; Sukavanam, N. (2013). Stability analysis of robust adaptive hybrid position/- force controller for robot manipulators using neural network with uncertainties,Neural Computing & Applications, 22(7-8), 1745-1755, 2013.
https://doi.org/10.1007/s00521-012-0966-6

[17] Sun, Y.X.; Chen, W.D. (2011). Operating Unknown Constrained Mechanisms Based on Motion Prediction and Impedance Control, ROBOT, 33(5), 563-569, 2011.

[18] Wang, T. (2016). Design of An Exoskeleton Rehabilitation Robot Replicating the Synergistic Characteristics of Upper Extremity Movements, Huazhong University of Science and Technology, 2016.

[19] Wang, Z.G.; Freidovich, L.B.; Zhang, H.H.(2019). Periodic Motion Planning and Control for Double Rotary Pendulum via Virtual Holonomic Constraints,IEEE/CAA Journal of AutomaticaSinica, 6(1), 291-298, 2019.
https://doi.org/10.1109/JAS.2017.7510712

[20] Wei, H.X.; Wang, X.D;Meng, Q.X.(2000). The study of a passive and pliant underwater claw, MarineTechnology,2000(3):17-20, 2000.

[21] Whitney, D.E.; Rourke, J.M.(1986). Mechanical behavior and design equations for elastomer shear pad remote center compliances, Journal of Dynamic Systems Measurement & Control, 108(3), 223-232, 1986.
https://doi.org/10.1115/1.3143771

[22] Xu, Q.S. (2013). Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper, Robotics IEEE Transactions on, 29(3), 663-673, 2013.
https://doi.org/10.1109/TRO.2013.2239554

[23] Zhang, X.L.; Gu, X.X.; Zhao, H.F.; Wang, K.(2016). Design of a Compliant Robotic Arm Based on Series Elastic Actuator,ROBOT, 38(4), 385-394, 2016.

[24] Zuo, X.R.; Han, L.L.; Zhuang, J.; Shi, Q.Q.; Huang, Y.(2015). Design of human-robot interaction system for space robot using robot operating system, Computer engineering and design, 36(12), 3370-3374, 2015.
Published
2019-11-17
How to Cite
HUA, Jin et al. A Force/Position Hybrid Controller for Rehabilitation Robot. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 14, n. 5, p. 615-628, nov. 2019. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3651>. Date accessed: 02 july 2020. doi: https://doi.org/10.15837/ijccc.2019.5.3651.