A Factored Similarity Model with Trust and Social Influence for Top-N Recommendation

Xuefeng Zhang, Xiuli Chen, Dewen Seng, Xujian Fang


Many trust-aware recommendation systems have emerged to overcome the problem of data sparsity, which bottlenecks the performance of traditional Collaborative Filtering (CF) recommendation algorithms. However, these systems most rely on the binary social network information, failing to consider the variety of trust values between users. To make up for the defect, this paper designs a novel Top-N recommendation model based on trust and social influence, in which the most influential users are determined by the Improved Structural Holes (ISH) method. Specifically, the features in Matrix Factorization (MF) were configured by deep learning rather than random initialization, which has a negative impact on prediction of item rating. In addition, a trust measurement model was created to quantify the strength of implicit trust. The experimental result shows that our approach can solve the adverse impacts of data sparsity and enhance the recommendation accuracy.


recommendation system, matrix factorization, trust, social influence, deep learning, top-n recommendation

Full Text:



Anagnostopoulos, A.; Kumar, R.; Mahdian, M. (2008). Influence and correlation in social networks, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 7-15, 2008.

Bao, Y.; Fang, H.; Zhang, J. (2014). Leveraging decomposed trust in probabilistic matrix factorization for effective recommendation, Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), 350: 30-36, 2014.

Burt, R.S. (2009); Structural holes: The social structure of competition, Harvard university press, 2009.

Deng, S.; Huang, L.; Xu, G. et al. (2017). On deep learning for trust-aware recommendations in social networks, IEEE Transactions on Neural Networks & Learning Systems, 28(5), 1164- 1177, 2017.

Deng, X.Y.; Wang, C. (2018). A hybrid collaborative filtering model with context and folksonomy for social recommendation, Ingenierie des Systemes d'Information, 23(5), 139- 157, 2018.

Freeman, L.C. (1977); A set of measures of centrality based on betweenness, Sociometry, 40(1), 35-41, 1977.

Guy, I.; Ronen, I.; Wilcox, E. (2009). Do you know?: recommending people to invite into your social network, Proceedings of the 14th International Conference on Intelligent User Interfaces, 77-86, 2009.

Guo, G.; Zhang, J.; Yorke-Smith, N. (2016). A novel recommendation model regularized with user trust and item ratings, IEEE Transactions on Knowledge & Data Engineering, 28(7), 1607-1620, 2016.

Guo, G.; Zhang, J.; Zhu, F. et al. (2017). Factored similarity models with social trust for top-n item recommendation, Knowledge-Based Systems, 122, 17-25, 2017.

Jamali, M.; Ester; M. (2010). A matrix factorization technique with trust propagation for recommendation in social networks, Proceedings of the fourth ACM conference on Recommender systems, 135-142, 2010.

Kabbur, S.; Ning, X.; Karypis, G. (2013). Fism: factored item similarity models for top-n recommender systems, Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 659-667, 2013.

Kempe, D.; Kleinberg, J.; Tardos, E. (2003). Maximizing the spread of influence through a social network, Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 137-146, 2003.

Kitsak, M.; Gallos, L.K.; Havlin, S. et al. (2010). Identification of influential spreaders in complex networks, Nature Physics, 6(11), 888-893, 2010.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative filtering model, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 426-434, 2008.

Li, D.; Luo, Z.; Ding, Y. et al. (2017). User-level microblogging recommendation incorporating social influence, Journal of the Association for Information Science and Technology, 68(3), 553-568, 2017.

Pan, W.; Chen, L. (2013). Gbpr: Group preference based bayesian personalized ranking for one-class collaborative filtering, Proceedings of The Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI), 13, 2691-2697, 2013.

Pastorsatorras, R.; Castellano, C.; Mieghem, P.V. et al. (2014). Epidemic processes in complex networks, Review of Modern Physics, 87(3), 120-131, 2014.

Peng, S.; Wang, G.; Xie, D. (2017). Social influence analysis in social networking big data: Opportunities and challenges, IEEE Network the Magazine of Global Internetworking, 31(1), 11-17, 2017.

Rendle, S.; Freudenthaler, C.; Gantner, Z. et al.. (2009). Bpr: Bayesian personalized ranking from implicit feedback, Conference on Uncertainty in Artificial Intelligence, 452-461, 2009.

Rogers, E.M. (1995). The Diffusion of Innovations, Free Press, 1995.

Sedhain, S.; Menon, A.K.; Sanner, S. et al. (2017). Low-rank linear cold-start recommendation from social data, Proceedings of the 31th AAAI Conference on Artificial Intelligence (AAAI), 1502-1508, 2017.

Xu, W.; Rezvani, M.; Liang, W. et al. (2017). Efficient algorithms for the identification of top-k structural hole spanners in large social networks, IEEE Transactions on Knowledge & Data Engineering, 29(5), 1017-1030, 2017.

Xu, K.; Zheng, X.; Cai, Y. et al. (2018). Improving user recommendation by extracting social topics and interest topics of users in unidirectional social networks, Knowledge Based Systems, 140, 120-133, 2018.

Yuan, X.; Huang, B.; Wang, Y. et al. (2018). Deep learning based feature representation and its application for soft sensor modeling with variable-wise weighted SAE, IEEE Transactions on Industrial Informatics, (99): 1-1, 2018.

Yang, C. ; Sun, M. ; Zhao; W. X. et al. (2016). A neural network approach to joint modeling social networks and mobile trajectories, Acm Transactions on Information Systems, 35(4), 36, 2016.

Yuan, Q.; Zhao, S.; Chen, L. et al. (2009). Augmenting collaborative recommender by fusing explicit social relationships, Workshop on Recommender Systems and the Social Web, Recsys, 2009.

Zhang, Z., Liu, Y., Jin, Z. et al. (2018). A dynamic trust based two-layer neighbor selection scheme towards online recommender systems, Neurocomputing, 285, 94-103, 2018.

Zhao, H.; Yao, Q.; Kwok, J.T. et al. (2017). Collaborative filtering with social local models, 2017 IEEE International Conference on Data Mining (ICDM), 645-654, 2017.

DOI: https://doi.org/10.15837/ijccc.2019.4.3577

Copyright (c) 2019 Fang Zhao, Xiuli Chen, Dewen Seng, Xuefeng Zhang, Xujian Fang

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]

INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.


 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2);

SCImago Journal & Country Rank

Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.