Selection of Cluster Heads for Wireless Sensor Network in Ubiquitous Power Internet of Things

Wei Hu, Wenhui Yao, Yawei Hu, Huanhao Li


This paper designs a selection algorithm of cluster heads (CHs) in wireless sensor network (WSN) under the ubiquitous power Internet of Things (UPIoT), aiming to solve the network failure caused by premature death of WSN sensors and overcome the imbalance in energy consumption of sensors. The setting of the cluster head node helps to reduce the energy consumption of the nodes in the network, so the choice of cluster head is very important. The author firstly explains the low energy adaptive clustering hierarchy (LEACH) and the distance and energy based advanced LEACH (DEAL) protocol. Compared with the LEACH, the DEAL considers the remaining nodal energy and the sensor-sink distance. On this basis, the selectivity function-based CH selection (SF-CHs) algorithm was put forward to select CHs and optimize the clustering. Specifically, the choice of CHs was optimized by a selectivity function, which was established based on the remaining energy, number of neighbors, motion velocity and transmission environment of sensors. Meanwhile, a clustering function was constructed to optimize the clustering, eliminating extremely large or small clusters.Finally, the simulation proves that the DEAL protocol is more conducive to prolonging the life cycle of the sensor network. The SF-CHs algorithm can reduce the residual energy variance of nodes in the network, and the network failure time is later, which provides a way to improve the stability of the network and reduce energy loss.


Wireless sensor network (WSN), ubiquitous power internet of things (UPIoT), cluster head (CH) selection, clustering optimization

Full Text:



Aghera, K.; Pambhar, H.; Tada, N. (2017). MMR-LEACH: Multitier multi-hop routing in LEACH protocol, Proceedings of International Conference on Communication and Networks, 205-214, 2017.

Amirthalingam, K.; Anuratha, V. (2017). Improved LEACH: A modified LEACH for wireless sensor network, IEEE International Conference on Advances in Computer Applications, 255- 258, 2017.

Awad, F. H. (2018). Optimization of relay node deployment for multisource multipath routing in wireless multimedia sensor networks using gaussian distribution, Computer Networks, 145, 96-106, 2018.

Bao, X.; Xie, J.; Nan, L.; Li, S. (2014). WRECS: An improved cluster heads selection algorithm for WSNs, Journal of Software, 9(2), 78-89, 2014.

Baranidharan, B.; Santhi, B. (2016). DUCF: Distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach, Applied Soft Computing, 40, 495-506, 2016.

Batra, P. K.; Kant, K. (2016). LEACH-MAC: A new cluster head selection algorithm for Wireless Sensor Networks, Wireless Networks, 22(1), 49-60, 2016.

Chidean, M. I.; Morgado, E.; Del Arco, E.; Ramiro-Bargueno, J., Caamano, A. (2015). Scalable data-coupled clustering for large scale WSN, IEEE Transactions on Wireless Communications, 14(9), 4681-4694, 2015.

Jia, Y. L.; Chang, X. M. (2017). Cluster heads selection algorithm for wireless sensor networks based on cluster heads sending energy consumption, Computer Engineering and Applications, 53(22), 82-86, 2017.

Lee, J. Y.; Jung, K. D.; Moon, S. J.; Jeong, H. Y. (2017). Improvement on LEACH protocol of a wide-area wireless sensor network, Multimedia Tools & Application, 76(19), 19843-19860, 2017.

Liang, P.; He, W. (2017). Grid dynamic energy threshold-based cluster header algorithm in wireless sensor network, Chinese Journal of Sensors and Actuators, 30(10), 1583-1588, 2017.

Mehra, P. S.; Doja, M. N.; Alam, B. (2018). Fuzzy based enhanced cluster head selection (FBECS) for WSN, Journal of King Saud University - Science, 2018.

Mittal, N. (2019). Moth flame optimization based energy efficient stable clustered routing approach for wireless sensor networks, Wireless Personal Communications, 104(2), 677-694, 2019.

Shalabi, M.; Anbar, M.; Wan, T. C.; Khasawneh, A. (2018). Variants of the low-energy adaptive clustering hierarchy protocol: Survey, issues and challenges, Electronics, 7(8), 136- 164, 2018.

Snigdh, I.; Gupta, N. (2016). Quality of service metrics in wireless sensor networks: A survey, Journal of the Institrtion of Engineers, 97(1), 91-96, 2016.

Srikanth, B.; Kumar, H.; Rao, K. U. M. (2018). A robust approach for WSN localization for underground coal mine monitoring using improved RSSI technique, Mathematical Modelling of Engineering Problems, 5(3), 225-231, 2018.

Sun, L. M.; Li, J. Z.; Chen, Y. (2005). Wireless sensor networks, Beijing: Tsinghua university press, 1-5, 2005.

Thakkar, A. (2017). DEAL: Distance and energy based advanced LEACH protocol, International Conference on Information and Communication Technology for Intelligent Systems, 370-376, 2017.

Wei, X. (2014). Power wireless sensor network clustering routing optimization algorithm research, North China electric power university (Beijing), 2014.

Zahedi, A.; Arghavani, M.; Parandin, F.; Arghavani, A. (2018). Energy efficient reservationbased cluster head selection in WSNs, Wireless Personal Communications Wireless Personal Communications, 100(3), 667-679, 2018.


Copyright (c) 2019 Wei Hu, Wenhui Yao, Yawei Hu, Huanhao Li

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

IJCCC is an Open Access Journal : CC-BY-NC.

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]

INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.


 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2);

SCImago Journal & Country Rank

Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.