Manufacturing Process Monitoring in Terms of Energy Management Improving

Attila Simo, Constantin Barbulescu, Stafan Kilyeni, Claudia Dragos

Abstract


Seeking out new technologies and deploying them for competitive advantage is a key priority for any company. In this context, Internet of Things (IoT) promise to change the way we live and work. IoT could help us in overtaking the top global challenges, as energy management, agriculture and food security, environment and natural resources security, etc., but to achieve this vision, "things" need to sense their environment and share this information among them as well as with us to offer intelligent decision-making. Nowadays, IoT become even more interesting due to the existence of Low Power Wide Area (LPWA) networks. LPWA is a key component of a wider IoT technology wave. In this paper, a LoRaWAN based solution is presented, for manufacturing process monitoring, in order to improve energy management in plants. The authors present a minimally invasive device, with which many product manufacturing data can be obtained for analysis and further improvements. This paper is an extended variant of [14].

Keywords


intelligent decision-making, LoRaWAN communication protocol, wireless sensor network

Full Text:

PDF

References


Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. (2016). A Study of LoRa: Long Range & Low Power Networks for the Internet of Things, Journal of Sensors, 16(9), 1-18, 2016.
https://doi.org/10.3390/s16091466

Avotins, A.; Senfelds, A.; Apse-Apsitis P.; Podgornovs, A. (2017). IoT solution approach for energy consumption reduction in buildings: Part 1. Existing situation and problems regarding electrical consumption, Proceeding of the 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 31-36, 2017.
https://doi.org/10.1109/RTUCON.2017.8124847

Avotins, A.; Podgornovs, A.; Senfelds, A.; Vegeris M. (2018). IoT Solution Approach for Energy Consumption Reduction in Buildings: part 2. Measurement Setup and Practical Data Analysis, Proceedings of the17th International Scientific Conference on Engineering for Rural Developmen, 923-929, 2018.
https://doi.org/10.22616/ERDev2018.17.N375

Berthelsen, E.; Morrish, J. (2015). Forecasting the internet of things revenue opportunity, Tech. Rep., 2015.

Cattani, M.; Boano, C.A.; Romer, K. (2017). An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication, Journal of Sensor and Actuator Networks, 6(2), 1-18, 2017.
https://doi.org/10.3390/jsan6020007

Garetti, M.; Taisch, M. (2012). Sustainable manufacturing: trends and research challenges, Journal ofProdustion Planning & Control, 23(2), 83-104, 2012. ]
https://doi.org/10.1080/09537287.2011.591619

Kharel, J.; Shin, S. Y. (2017). Smart Health Monitoring System of Employee for Smart Factory, Proceedings of Symposium of the Korean Institute of communications and Information Sciences, 1-6, 2017.

Nokia (2016). LTE evolution for IoT connectivity, Tech. Rep., 2016.

Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo M. (2015). On the coverage of LPWANs: range evaluation and channel attenuation model for lora technology, Proceedings of the 14th International Conference on ITS Telecommunications (ITST), 55- 59, 2015.
https://doi.org/10.1109/ITST.2015.7377400

Neumann, P.; Montavont, J.; NoATl, T. (2016). Indoor Deployment of Low-Power Wide Area Networks (LPWAN): a LoRaWAN case study, Proceedings of the 2th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 54-58, 2016.
https://doi.org/10.1109/WiMOB.2016.7763213

Petjjrvi, J.; Mikhaylov, K.; Hmlinen, M.; Iinatti, J. (2016). Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring, Proceedings of the 10th International Symposium on Medical Information and Communication Technology (ISMICT), 1-5, 2016.
https://doi.org/10.1109/ISMICT.2016.7498898

Rizzi, M.; Ferrari, P.; Flammini, A.; Sisinni, E. (2017). Evaluation of the IoT LoRaWAN Solution for Distributed Measurement Applications, Journal of Instrumentation and Measurement, 66(12), 1-18, 2017.
https://doi.org/10.1109/TIM.2017.2746378

Raza, U.; Kulkarni, P.; Sooriyabandara M. (2017). Low Power Wide Area Networks: An Overview, Journal of Communications Surveys & Tutorials, 19(2), 855-873, 2017.
https://doi.org/10.1109/COMST.2017.2652320

Simo, A.; Barbulescu C.; Kilyeni, S.; Dragos, C. (2018). LoRa based Energy Efficiency Improving in Manufacturing Processesn; Proceeding of the 7th International Conference on Computers Communications and Control (ICCCC), 156-161, 2018.
https://doi.org/10.1109/ICCCC.2018.8390453

Shrouf, F.; Miragliotta, G. (2015). Energy management based on Internet of Things: practices and framework for adoption in production management, Journal of Cleaner Production, 100, 235-246, 2015.
https://doi.org/10.1016/j.jclepro.2015.03.055

Weinert, N.; Chiotellis, S.; Seliger G. (2011). Methodology for planning and operating energy-efficient production systems, CIRP Annals, 60(1), 41-44, 2011.
https://doi.org/10.1016/j.cirp.2011.03.015

Xiong, X.; Zheng, K.; Xu, R.; Xiang, W.; Chatzimisios, P. (2015). Low power wide area machine-to-machine networks: key techniques and prototype, IEEE Communications Magazine, 53(9), 64-71, 2015.
https://doi.org/10.1109/MCOM.2015.7263374




DOI: https://doi.org/10.15837/ijccc.2019.3.3560



Copyright (c) 2019 Attila Simo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]


INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2016: IF=1.374. .

IJCCC is indexed in Scopus from 2008 (CiteScore 2017 = 1.04; SNIP2017 = 0.616, SJR2017 =0.326):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.

 

 Impact Factor in JCR2017 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.29 (Q3). Scopus: CiteScore2017=1.04 (Q2); Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.