IoT Devices Signals Processing based on Multi-dimensional Shepard Local Approximation Operators in Riesz MV-algebras

  • Dan Noje University of Oradea Primus Technologies SRL
  • Radu Tarca University of Oradea
  • Ioan Dzitac Aurel Vlaicu University of Arad Agora University of Oradea
  • Nicolae Pop Institute of Solid Mechanics of the Romanian Academy

Abstract

In this article we continue the study started in [8] to use Riesz MValgebras for IoT devices signals processing. The Shepard local approximation operators introduced in [8] were defines such that to approximate single variable functions. In real industrial usage, the signals coming from IoT devices may be influenced by mode than a parameter, and thus we introduce generalized Shepard local approximation operators that can approximate multi-dimensional functions and some numerical experiments are considered.

References

[1] Bede, B.; Di Nola, A. (2004), Elementary calculus in Riesz MV-algebras, International Journal of Approximate Reasoning, 36, 129-149, 2004.
https://doi.org/10.1016/j.ijar.2003.09.003

[2] Chang, C.C. (1958), Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88, 467-490, 1958.
https://doi.org/10.1090/S0002-9947-1958-0094302-9

[3] Chang, C.C. (1959), A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc., 93, 74-80, 1959.

[4] Di Nola, A.; Flondor, P.; Leustean, I. (2003), MV-modules, Journal of Algebra, 2003, 261, 21-40, 2003.
https://doi.org/10.1016/S0021-8693(03)00332-6

[5] Noje, D. (2002), Using Bernstein Polynomials for image zooming, Proceedings of the Symposium Zilele Academice Clujene, Computer Science Section, 99-102, 2002.

[6] Noje, D.; Bede, B. (2003), Vectorial MV-algebras, Soft Computing, 7(4), 258-262, 2003.
https://doi.org/10.1007/s00500-002-0197-3

[7] Noje, D.; Bede, B. (2001), The MV-algebra structure of RGB model, Studia Universitatis Babes-Bolyai, Informatica, XLVI, 1, 77-86, 2001.

[8] Noje, D.; Dzitac I.; Pop N.; Tarca, R. (2019), IoT devices signals processing based on Shepard local approximation operators defined in Riesz MV-algebras, Informatica, submitted for publication 2018.

[9] Shepard, D. D. (1968), A two dimensional interpolation function for irregularly spaced data, Proceedings of 23rd Nat. Conf. ACM, 517—524, 1968.
https://doi.org/10.1145/800186.810616

[10] [Online]. Sisteme informatice, Universitatea Stefan cel Mare Suceava. Available online: http://www.seap.usv.ro/~sorinv/PSI.pdf, Accessed on 5 October 2018.

[11] [Online]. Sisteme Informatice Industriale, Universitatea Politehnica din Bucuresti. Available online: http://shiva.pub.ro/?page_id=345, Accessed on 2 October 2018.
Published
2019-02-14
How to Cite
NOJE, Dan et al. IoT Devices Signals Processing based on Multi-dimensional Shepard Local Approximation Operators in Riesz MV-algebras. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 14, n. 1, p. 56-62, feb. 2019. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3490>. Date accessed: 04 july 2020. doi: https://doi.org/10.15837/ijccc.2019.1.3490.

Keywords

IoT devices; signal processing; Shepard local approximation operators; local approximation operators; approximation algorithms; Riesz MV-algebras, vectorial MV-algebras