ANN based Short-Term Load Curve Forecasting

Violeta Eugenia Chis, Constantin Barbulescu, Stefan Kilyeni, Simona Dzitac


A software tool developed in Matlab for short-term load forecasting (STLF) is presented. Different forecasting methods such as artificial neural networks, multiple linear regression, curve fitting have been integrated into a stand-alone application with a graphical user interface. Real power consumption data have been used. They have been provided by the branches of the distribution system operator from the Southern-Western part of the Romanian Power System. This paper is an extended variant of [4].


artificial neural networks; short-term load forecasting; articial intelligence; load curve

Full Text:



Charytoniuk, W.; Chen, M.S.; Van Olinda, P. (1998). Nonparametric Regression Based Short-Team Load Forecasting, IEEE Transaction on Power Systems, 13(3), 735-730, 1998.

Chen, H.; Canizares, A.C.; Ajit, S. (2011). ANN based Short-Term Load Forecasting in Electricity markets, Proceedings of the IEEE Power Engineering Society Winter Meeting, 2, 411-415, 2011.

Chen, J.F.; Wang, W.M.; Huang, C.M.(2005). Analysis of an adaptive time-series autoregressive moving-average (ARMA) model for short-term load forecasting, Electric Power Systems Research, 34, 187-196, 2005.

Chis, V.; Barbulescu, C., Kilyeni, S.; Dzitac S. (2018). Short-Term Load Forecasting Software Tool, Proceedings of the 7th International Conference on Computers Communications and Control (ICCCC), 111–118, 2018.

Cho, M.Y.; Hwang, J.C.; Chen, C.S. (1995). Customer short-term load forecasting by using ARIMA transfer function model, Proceedings of the International Conference on Energy Management and Power Delivery, 317-322, 1995.

Danladi, A.; Yohanna, M.; Puwu, M.I.; Garkida, B.M. (2016). Long-term load forecast modelling using a fuzzy logic approach, Pacific Science Review A: Natural Science and Engineering, 18(2), 123-127, 2016.

Ho, K.l.; Hsu, Y.I.; Chen, C.F.; Lee, T.E.; Liang, C.C.; Lai, T.S.; Chen, K.K. (1990). Short Term Load Forecasting of Taiwan Power System Using a Knowledge Based Expert System, IEEE Transactions on Power Systems, 5(4), 1214-1221, 1990.

Hong, W.C.; Dong, Y.; Chen, L.Y.; Wei, S.Y. (2012). Seasonal Support vector Regression with Chaotic Genetic Algorithm in Electric Load, ICGEC 6th International Conference on Genetic and Evolutionary Computing, 124-127, 2012.

Hyndman, R.J.; Koehler, A.B. (2016). Another look at measuring forecast accuracy, International Journal of Forecasting, 22(2), 679-688, 2016.

Ismail, Z.; Efendy, R. (2011). Enrollment forecasting based on modified weight fuzzy time series, Journal of Artificial Intelligence, 4(1), 110-118, 2011.

Jin, X.; Dong, Y.; Wu, J.; Wang, J. (2010). An Improved Combined Forecasting Method for Electric Power Load Based on Autoregressive Integrated Moving Average Model, International Conference of Information Science and Management Engineering (ISME), 2, 476-480, 2010.

Karapidakis, S. (2007). Machine learning for frequency estimation of power systems, Applied Soft Computing, 7(1), 105-114, 2007.

Mordjaoui, M.; Haddad, S.; Medoued, A.; Laouafi, A. (2017). Electric load forecasting by using dynamic neural network, Journal hydrogen Energy, 42, 17655-17663, 2017.

Pandian, S.C.; Duraiswamy, K.; Rajan, C.C.A. (2006). Fuzzy approach for short term load forcasting, Electric Power Systems Research, 76, 541-548, 2006.

Park, D.C.; El-Sharkawi, M.A.; Marks, R.J.; Atlas, L.E.; Damborg, M.J. (1991). Electric load forecasting using an artificial neural network, IEEE Transactions on Power Systems, 6(2), 442-449, 1991.

Schellong, W. (2011). Energy Demand Analysis and Forecast, Energy Management Systems P. Giridhar Kini, IntechOpen, DOI: 10.5772/21022, 2011.

Sheikh, S.K.; Unde, M.G. (2012). Short-Term Load Forecasting Using ANN Technique, International Journal of Engineering Sciences & Emerging Technologies, 1(2), 97-107, 2012.

Shelke, M.; Thakare, P.D. (2014). Short Term Load Forecasting by Using Data Mining Techniques, International Journal of Science and Research (IJSR), 3(9), 1363-1367, 2014.

Singh, P.; Dwivedi, P. (2018). Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem, Journal of Applied Energy, 217, 537- 549, 2018.

Srinivasan, D.S.; Tan, S.S.; Cheng, C.S.; Chan, E.K. (1999). Parallel neural network-fuzzy expert system strategy for short-term load forecasting: system implementation and performance evaluation, IEEE Transactions on Power Systems, 14(3), 1100-1106, 1999.

Yang, H.P.; Yan, F.F.; Wang, H.; Zhang, L.(2016). Short-term load forecasting based on data mining, IEEE 20th International Conference on Computer Supported Cooperative Work in Design, 170-173, 2016.

Zhang, J.,; Yi-Ming, W.; Dezhi, L.; Zhongfu, T.; Jianhua, Z. (2018). Short term electricity load forecasting using a hybrid model, Journal Energy, 158(C), 774-781, 2018.

[Online]. Available: Matlab Users guide, Accesed on 12 February 2018.


Copyright (c) 2018 Violeta Eugenia Chis

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]

INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.


 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2);

SCImago Journal & Country Rank

Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.