Ensemble Sentiment Analysis Method based on R-CNN and C-RNN with Fusion Gate

Fushen Yang, Changshun Du, Lei Huang


Text sentiment analysis is one of the most important tasks in the field of public opinion monitoring, service evaluation and satisfaction analysis in the current network environment. At present, the sentiment analysis algorithms with good effects are all based on statistical learning methods. The performance of this method depends on the quality of feature extraction, while good feature engineering requires a high degree of expertise and is also time-consuming, laborious, and affords poor opportunities for mobility. Neural networks can reduce dependence on feature engineering. Recurrent neural networks can obtain context information but the order of words will lead to bias; the text analysis method based on convolutional neural network can obtain important features of text through pooling but it is difficult to obtain contextual information. Aiming at the above problems, this paper proposes a sentiment analysis method based on the combination of R-CNN and C-RNN based on a fusion gate. Firstly, RNN and CNN are combined in different ways to alleviate the shortcomings of the two, and the sub-analysis network R-CNN and C-RNN finally combine the two networks through the gating unit to form the final analysis model. We performed experiments on different data sets to verify the effectiveness of the method.


Sentiment analysis, convolutional neural network, recurrent neural network, fusing gate.

Full Text:



Collobert, R.; Weston, J.; Bottou, L.; et al. (2011). Natural language processing (almost) from scratch, Journal of Machine Learning Research, 12, 2493-2537, 2011.

Cliche, M. (2017). BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs, arXiv preprint arXiv, 1704.06125, 2017.

Du, C.; Huang, L. (2019). Sentiment Analysis Method Based On Piecewise Convolutional Neural Network and Generative Adversarial Network, International Journal of Computers Communications & Control, 14(1), 7-20, 2019.

Kalchbrenner, N.; Blunsom, P. (2013). Recurrent convolutional neural networks for discourse compositionality, arXiv preprint arXiv, 1306.3584, 2013.

Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. (2014). A convolutional neural network for modelling sentences, arXiv preprint arXiv, 1404.2188, 2014.

Kim, Y. (2014). Convolutional neural networks for sentence classification, arXiv preprint arXiv, 1408.5882, 2014.

Lai, S.; Xu, L.; Liu, K.; et al. (2015). Recurrent Convolutional Neural Networks for Text Classification, AAAI, 333, 2267-2273, 2015.

Luong, T.; Socher, R.; Manning, C. (2013). Better word representations with recursive neural networks for morphology, Proceedings of the Seventeenth Conference on Computational Natural Language Learning, 104-113, 2013.

Socher, R.(2014). Recursive deep learning for natural language processing and computer vision, Stanford University, 2014.

Socher, R.; Chen, D.; Manning, C.D.; et al.(2013). Reasoning with neural tensor networks for knowledge base completion, Advances in neural information processing systems, 926-934, 2013.

Socher, R.; Huval, B.; Manning, C.D.; et al. (2012). Semantic compositionality through recursive matrix-vector spaces, Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Association for Computational Linguistics, 1201-1211, 2012.

Socher, R.; Perelygin, A.; Wu, J.; et al. (2013). Recursive deep models for semantic compositionality over a sentiment treebank, Proceedings of the 2013 conference on empirical methods in natural language processing, 1631-1642, 2013.

Shi, B.; Bai, X.; Yao, C. (2017). An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition, IEEE transactions on pattern analysis and machine intelligence, 39(11), 2298-2304, 2017.

DOI: https://doi.org/10.15837/ijccc.2019.2.3375

Copyright (c) 2019 Changshun Du

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]

INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.


 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2);

SCImago Journal & Country Rank

Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.