Electronic Throttle Valve Takagi-Sugeno Fuzzy Control Based on Nonlinear Unknown Input Observers

  • Wafa Gritli Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, LA.R.A Automatique http://orcid.org/0000-0003-3081-9706
  • Hajer Gharsallaoui Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, LA.R.A Automatique
  • Mohamed Benrejeb Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, LA.R.A Automatique
  • Pierre Borne Ecole Centrale de Lille, Cité scientifique CS20048, 59651 Villeneuve d’Ascq Cedex

Abstract

This paper deals with the synthesis of a new fuzzy controller applied to Electronic Throttle Valve (ETV) affected by an unknown input in order to enhance the rapidity and accuracy of trajectory tracking performance. Firstly, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate this nonlinear system. Secondly, a novel Nonlinear Unknown Input Observer (NUIO)-based controller is designed by the use of the concept of Parallel Distributed Compensation (PDC). Then, based on Lyapunov method, asymptotic stability conditions of the error dynamics are given by solving Linear Matrix Inequalities (LMIs). Finally, the effectiveness of the proposed control strategy in terms of tracking trajectory and in the presence of perturbations is verified in comparison with a control strategy based on Unknown Input Observers (UIO) of the ETV described by a switched system for Pulse-Width-Modulated (PWM) reference signal.

References

[1] Ben Hamouda, L.; Ayadi, M.; Langlois, N. (2016); Fuzzy Fault Tolerant Predictive Control for a Diesel Engine Air Path, International Journal of Control, Automation and Systems, 14, 443-451, 2016.
https://doi.org/10.1007/s12555-014-0533-2

[2] Benrejeb, M.; Soudani, D.; Sakly, A.; Borne, P. (2006); New Discrete Tanaka Sugeno Kang Fuzzy Systems Characterization and Stability Domain, International Journal of Computers Communications & Control, 1(4), 9-19, 2006.
https://doi.org/10.15837/ijccc.2006.4.2302

[3] Benrejeb, M. (2010); Stability Study of Two Level Hierarchical Nonlinear Systems Plenary lecture, IFAC Proceedings Volumes, 43(8), 30-41, 2010.

[4] Bernardo, M.; Gaeta, A.; Montanaro, U.; Santini, S. (2010); Synthesis and experimental validation of the novel LQ-NEMCSI adaptive strategy on an electronic throttle valve, IEEE Transactions on Control Systems Technology, 18(6), 1325-1337, 2010.

[5] Bezzaoucha, S.; Marx, B.; Maquin, D.; Ragot, J. (2013); State and parameter estimation for nonlinear systems: a Takagi-Sugeno approach, In American Control Conference, Washington, 2013.

[6] Caruntu, C.F.; Vargas, A.N.; Acho, L.; Pujol, G. (2018); Adaptive-Smith Predictor for Controlling an Automotive Electronic Throttle over Network, International Journal of Comput- ers Communications & Control, 13(2), 151-161, 2018.
https://doi.org/10.15837/ijccc.2018.2.3109

[7] Chen, W.; Saif, M. (2007); Design of a TS Based Fuzzy Nonlinear Unknown Input Observer with Fault Diagnosis Applications, American Control Conference, New York, 2007.

[8] Chen, J.; Patton, R. J.; Zhang, H. Y. (1996); Design of unknown input observers and robust fault detection filters, International Journal of Control, 63(1), 85-105, 1996.
https://doi.org/10.1080/00207179608921833

[9] Delmotte, F.; Dambrine, M.; Delrot, S.; Lalot, S. (2013); Fouling detection in a heat exchanger: A polynomial fuzzy observer approach, Control Engineering Practice, 21, 1386- 1395, 2013.
https://doi.org/10.1016/j.conengprac.2013.06.004

[10] Deur, J.; Pavkovic, D.; Peric, N.; Jansz, M.; Hrovat, D. (2004); An electronic throttle control strategy including compensation of friction and limphome effects, IEEE Transanctions on Industry Applications, 40(3), 821-834, 2004.
https://doi.org/10.1109/TIA.2004.827441

[11] Du, Z.-B.; Lin, T.-C.; Zhao, T.-B. (2015); Fuzzy Robust Tracking Control for Uncertain Nonlinear Time-Delay System, International Journal of Computers Communications and Control, 10(6), 812-824, 2015.

[12] Dragos, C.-A.; Precup, R.-E.; Tomescu, M.L.; Preitl, S.; Petriu, E.M.; Radac, M.-B. (2013); An Approach to Fuzzy Modeling of Electromagnetic Actuated Clutch Systems, International Journal of Computers Communications and Control, 8(3), 395-406, 2013.
https://doi.org/10.15837/ijccc.2013.3.218

[13] Dzitac, I.; Filip, F.G.; Manolescu, M.J. (2017); Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017.
https://doi.org/10.15837/ijccc.2017.6.3111

[14] Gritli, W.; Gharsallaoui, H.; Benrejeb, M. (2017); A New Methodology for Tuning PIDType Fuzzy Logic Controllers Scaling Factors Using Genetic Algorithm of a Discrete-Time System, Modern Fuzzy Control Systems and Its Applications, InTech, 5, 89-103, 2017.

[15] Gritli, W.; Gharsallaoui, H.; Benrejeb, M. (2016); PID-type Fuzzy Scaling Factors Tuning Using Genetic Algorithm and Simulink Design Optimization for Electronic Throttle Valve, 3rd International Conference on Control, Decision and Information Technologies CoDIT, Malta, 2016.

[16] Gritli, W.; Gharsallaoui, H.; Benrejeb, M. (2017); Fault Tolerant Control Based on PID-type Fuzzy Logic Controller for Switched Discrete-time Systems: An Electronic Throttle Valve Application, Advances in Science, Technology and Engineering Systems Journal, 2(6), 186- 193, 2017.
https://doi.org/10.25046/aj020623

[17] Gritli, W.; Gharsallaoui, H.; Benrejeb, M. (2017); Fault Detection Based on Unknown Input Observers for Switched Discrete-Time Systems, International Conference on Advanced Systems and Electric Technologies IC-ASET, Hammamet, 2017.

[18] He, S.P.; Liu, F. (2012); Finite-time H1 fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback, IEEE Transactions on Fuzzy Systems, 20(4), 605-614, 2012.
https://doi.org/10.1109/TFUZZ.2011.2177842

[19] Ichalal, D.; Marx, B.; Ragot, J.; Maquin, D. (2009); State and unknown input estimation for nonlinear systems described by Takagi-Sugeno models with unmeasurable premise variables, In 17th Mediterranean Conference on Control and Automation, Thessaloniki, 2009.

[20] Jiao, X.; Zhang, J.; Shen, T. (2008); Variable-Structure Control of Electronic Throttle Valve, IEEE Transactions on Industrial Electronics, 55(11), 2008.

[21] Jiao, X.; Zhang, J.; Shen, T. (2014); An Adaptive Servo Control Strategy for Automotive Electronic Throttle and Experimental Validation, IEEE Transactions on Industrial Elec- tronics, 61(11), 2014.

[22] Kamal, E.; Aitouche, A.; Ghorbani, R.; Bayart, M. (2012); Unknown Input Observer with Fuzzy Fault Tolerant Control for Wind Energy System, 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Mexico City, 2012.

[23] Kitahara, A; Sato, A.; Hoshino, M.; Kurihara, N.; Shin, S. (1996); LQG based electronic throttle control with a two degree of freedom structurev, Proceedings 35th IEEE Conference Decision Control, 6(3), 1785-1789, Kobe, 1996.

[24] Lebbal, M.; Chafouk, H.; Hoblos, G.; Lefebvre, D. (2007); Modelling and Identification of Non-Linear Systems by a Multimodel Approach: Application to a Throttle Valve, Interna- tional Journal Information and Systems Science, 3, 67-87, 2007.

[25] Lendek, Z.; Guerra, T.M.; De Schutter, B. (2010); Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models, Springer, 2010.

[26] Li, H.Y.; Gao, Y.B.; Wu, L.G. Lam, H.K. (2015); Fault detection for T-S fuzzy time-delay systems: Delta operator and input-output methods, IEEE Transactions on Cybernetics, 45(2), 229-241, 2015.
https://doi.org/10.1109/TCYB.2014.2323994

[27] Li, H.Y.; Shi, P.; Yao, D.Y.; Wu, L.G. (2016); Observer based adaptive sliding mode control for nonlinear Markovian jump systems, Automatica, 64, 133-142, 2016.
https://doi.org/10.1016/j.automatica.2015.11.007

[28] Manai, Y.; Benrejeb, M. (2011); New Condition of Stabilisation for Continuous Takagi- Sugeno Fuzzy System based on Fuzzy Lyapunov Function, International Journal of Control and Automation, 4(3), 2011.

[29] Nakano, K.; Sawut, U.; Higuchi, K.; Okajima, Y. (2006); Modelling and observer-based sliding-mode control of electronic throttle systems, ECTI Transactions on Electrical Engi- neering, Electronics, and Communications, 4(1), 22-28, 2006.

[30] Ozguner, U.; Hong, S.; Pan, Y. (2001); Discrete-time sliding mode control of electronic throttle valve, Proceedings 40th IEEE Conference Decision Control, 1819-1824, Orlando, FL, 2001.

[31] Pavkovic, D.; Deur, J.; Jansz. M.; Peric, N. (2006); Adaptive control of automotive electronic throttle, Control Engineering Practice, 14(2), 121-136, 2006.
https://doi.org/10.1016/j.conengprac.2005.01.006

[32] Qu, Z.-F.; Du, Z.-B. (2016); Fuzzy H2 Guaranteed Cost Sampled-Data Control of Nonlinear Time-Varying Delay Systems, International Journal of Computers Communications & Control, 11(5), 708-719, 2016.
https://doi.org/10.15837/ijccc.2016.5.2682

[33] Su, X.J.; Shi, P.; Wu, L.G.; Song, Y.-D. (2013); A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays, IEEE Transactions on Fuzzy Sys- tems, 21(4), 655-671, 2013.
https://doi.org/10.1109/TFUZZ.2012.2226941

[34] Tanaka, K; Sugeno, M. (1992); Stability Analysis and Design of Fuzzy Control Systems, Fuzzy Sets and Systems, 45(2), 135-156, 1992.
https://doi.org/10.1016/0165-0114(92)90113-I

[35] Tanaka, K.; Ikeda, T.; Wang, H.O. (1998); Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs, IEEE Transanctions on Fuzzy Systems, 6(2), 1-16, 1998.

[36] Takagi, T.; Sugeno, M. (1985); Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15, 116-132, 1985.

[37] Yang, C. (2004); Model-based analysis and tuning of electronic throttle controllers, Visteon Corporation, SAE 2004 World Congress & Exhibition, 63-67, 2004.

[38] Yuan, X.; Wang, Y.; Sun, W.; Wu, L. (2010); RBF networks-based adaptive inverse model control system for electronic throttle, IEEE Transactions on Control Systems Technology, 18(3), 750-756, 2010.
https://doi.org/10.1109/TCST.2009.2026397

[39] Zadeh, L.A.; Tufis, D.; Filip, F.G.; Dzitac, I.; (2008); From Natural Language to Soft Computing: New Paradigms in Artificial Intelligence, Exploratory Workshop on NL- Computation, Baile Felix, Oradea, Romania, 2008.

[40] Zhang, J.H.; Shi, P.; Qiu, J.Q.; Nguang, S.K. (2015); A novel observer-based output feedback controller design for discrete-time fuzzy systems, IEEE Transactions on Fuzzy Systems, 23(1), 223-229, 2015.
https://doi.org/10.1109/TFUZZ.2014.2306953

[41] Zhao, X.D.; Zhang, L.X.; Shi, P.; Karimi, H.R. (2014); Novel stability criteria for T-S fuzzy systems, IEEE Transactions on Fuzzy Systems, 22(2), 313-323, 2014.
https://doi.org/10.1109/TFUZZ.2013.2254491
Published
2018-09-29
How to Cite
GRITLI, Wafa et al. Electronic Throttle Valve Takagi-Sugeno Fuzzy Control Based on Nonlinear Unknown Input Observers. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 13, n. 5, p. 808-823, sep. 2018. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3281>. Date accessed: 05 july 2020. doi: https://doi.org/10.15837/ijccc.2018.5.3281.

Keywords

Electronic throttle valve, switched system, Takagi-Sugeno fuzzy model, nonlinear unknown input observer, Lyapunov method