Arithmetic Operations with Spiking Neural P Systems with Rules and Weights on Synapses

  • Huifang Wang Wuhan Polytechnic University
  • Kang Zhou Wuhan Polytechnic University
  • Gexiang Zhang Southwest Jiaotong University,Xihua University

Abstract

The application of spiking neural P systems with rules and weights on synapses to arithmetic operations is discussed in this paper. We design specific spiking neural P systems with rules and weights on synapses for successfully performing addition, multiplication and the greatest common divisor. This is the first attempt to discuss the application of the new variant of spiking neural P systems, spiking neural P systems with rules and weights on synapses, and especially the use of spiking neural P systems to perform the greatest common divisor. Comparing with the results reported in the literature, smaller number of neurons are required to fulfill the arithmetic operations.

References

[1] Atanasiu, A.; Martinvide, C. (2001); Arithmetic with membranes, Romanian Journal of Information Science and Technology, 4(12), 5–20, 2001.

[2] Ciobanu, G.; Paun, Gh.; Pérez-Jiménez, M.J. (2006); Applications of membrane computing, Springer, 2006.

[3] Dzitac, I. (2015); Impact of membrane computing and P systems in ISI WoS. Celebrating the 65th Birthday of Gheorghe Paun, International Journal of Computers Communications & Control, 10(5), 617–626, 2015.
https://doi.org/10.15837/ijccc.2015.5.2024

[4] Guo, P.; Chen, H.; Zhang, H. (2015); An integrated P system for arithmetic operations, Journal of Computational & Theoretical Nanoscience, 12(10), 3346–3356, 2015.
https://doi.org/10.1166/jctn.2015.4124

[5] Ionescu, M.; Paun, Gh.; Yokomori, T. (2006); Spiking neural P systems, Fundamenta Informaticae, 71, 279–308, 2006.

[6] Ionescu, M.; Sburlan, D. (2012); Some applications of spiking neural P systems, Computing and Informatics, 27(3), 515–528, 2012.

[7] Kong, Y. (2005); Study on the computational power of spiking neural P system based on different biological background, Huazhong University of Science and Technology, 2005.

[8] Naranjo, M.A.G.; Leporati, A.; Pan, L. (2009); Performing arithmetic operations with spiking neural P systems, Proc. of the Seventh Brainstorming Week on Membrane Computing, 11(4), 181–198, 2009.

[9] Pan, L.; Paun, Gh. (2009); Spiking neural P systems with anti-spikes, International Journal of Computers Communications & Control, 4(3), 273–282, 2009.
https://doi.org/10.15837/ijccc.2009.3.2435

[10] Pan, L.; Paun, Gh.; Zhang, G.; Neri, F. (2017); Spiking neural P systems with communication on request, International Journal of Neural Systems, 27(8), 2017.

[11] Pan, L.; Zeng, X.; Zhang, X.; Jiang, X. (2012); Spiking neural P systems with weighted synapses, Neural Processing Letters, 35(1), 13–27, 2012.
https://doi.org/10.1007/s11063-011-9201-1

[12] Paun, Gh. (2000); Computing with membranes, Journal of Computer and System Sciences, 61(1), 108–143, 2000.
https://doi.org/10.1006/jcss.1999.1693

[13] Paun, Gh. (2002); Membrane computing: an introduction, Theoretical Computer Science, 287(1), 73–100, 2002.
https://doi.org/10.1016/S0304-3975(02)00136-6

[14] Paun, Gh. (2016); Membrane computing and economics: A general view, International Journal of Computers Communications & Control, 11(1), 105–112, 2016.
https://doi.org/10.15837/ijccc.2016.1.2160

[15] Paun, Gh.; Rozenberg, G.; Salomaa, A. (2010); The oxford handbook of membrane computing, Oxford University Press, 2010.

[16] Peng, H.; Wang, J.; Pérez-Jiménez, M.J.; Wang, H.; Shao, J.; Wang, T. (2013); Fuzzy reasoning spiking neural P system for fault diagnosis, Information Sciences, 235(6), 106– 116, 2013.

[17] Song, T.; Gong, F.; Liu, X.; Zhao, Y.; Zhang, X. (2016); Spiking neural P systems with white hole neurons, IEEE Transactions on Nanobioscience, 15(7), 666–673, 2016.
https://doi.org/10.1109/TNB.2016.2598879

[18] Song, T.; Pan, L. (2015); Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy, IEEE Transactions on NanoBioscience, 14(1), 38– 44, 2015.
https://doi.org/10.1109/TNB.2014.2367506

[19] Song, T.; Pan, L.; Paun, Gh. (2014); Spiking neural P systems with rules on synapses, Theoretical Computer Science, 529, 82–95, 2014.
https://doi.org/10.1016/j.tcs.2014.01.001

[20] Song, T.; Rodríguez-Patón, A.; Zheng, P.; Zeng, X. (2017); Spiking neural P systems with colored spikes, IEEE Transactions on Cognitive & Developmental Systems, doi: 10.1109/TCDS.2017.2785332, 2017.
https://doi.org/10.1109/TCDS.2017.2785332

[21] Song, T.; Zheng, P.; Wong, M.L.D.; Wang, X. (2016); Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control, Information Sciences, 372, 380–391, 2016.
https://doi.org/10.1016/j.ins.2016.08.055

[22] Wang, J.; Hoogeboom, H.J.; Pan, L.; Paun, Gh.; Pérez-Jiménez, M.J. (2010); Spiking neural P systems with weights, Neural Computation, 22(10), 2615–2646, 2010.
https://doi.org/10.1162/NECO_a_00022

[23] Wang, J.; Shi, P.; Peng, H.; Pérez-Jiménez, M.J.; Wang, T. (2013); Weighted fuzzy spiking neural P systems, IEEE Transactions on Fuzzy Systems, 21(2), 209–220, 2013.
https://doi.org/10.1109/TFUZZ.2012.2208974

[24] Wang, T.; Zhang, G.; Zhao, J.; He, Z.; Wang, J.; Pérez-Jiménez, M.J. (2015); Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems, IEEE Transactions on Power Systems, 30(3), 1182–1194, 2015.
https://doi.org/10.1109/TPWRS.2014.2347699

[25] Zeng, X.; Song, T.; Zhang, X.; Pan, L. (2012); Performing four basic arithmetic operations with spiking neural P systems, IEEE Transactions on Nanobioscience, 11(4), 366–374, 2012.
https://doi.org/10.1109/TNB.2012.2211034

[26] Zeng, X.; Xu, L.; Liu, X.; Pan, L. (2014); On languages generated by spiking neural P systems with weights, Information Sciences, 278(10), 423–433, 2014.

[27] Zeng, X.; Zhang, X.; Song, T.; Pan, L. (2014); Spiking neural P systems with thresholds, Neural Computation, 26(7), 1340–1361, 2014.
https://doi.org/10.1162/NECO_a_00605

[28] Zhang, G.; Cheng, J.; Gheorghe, M.; Meng, Q. (2013); A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems, Applied Soft Computing, 13(3), 1528–1542, 2013.
https://doi.org/10.1016/j.asoc.2012.05.032

[29] Zhang, G.; Pérez-Jiménez, M.J.; Gheorghe, M. (2017); Real-life applications with membrane computing, Springer International Publishing, 2017.

[30] Zhang, G.; Rong, H.; Neri, F.; Pérez-Jiménez, M.J. (2014); An optimization spiking neural P system for approximately solving combinatorial optimization problems, International Journal of Neural Systems, 24(5), 450–3642, 2014.

[31] Zhang, G.; Rong, H.; Ou, Z.; Pérez-Jiménez, M.J.; Gheorghe, M. (2014); Automatic design of deterministic and non-halting membrane systems by tuning syntactical ingredients, IEEE Transactions on NanoBioscience, 13(3), 363–371, 2014.
https://doi.org/10.1109/TNB.2014.2341618

[32 ]Zhang, X.; Zeng, X.; Pan, L.; Luo, B. (2009); A spiking neural P system for performing multiplication of two arbitrary natural numbers, Chinese Journal of Computers, 32(12): 2362–2372, 2009.

[33] [Online]. Available: ppage.psystems.eu.

[34] [Online]. Available: en.wikipedia.org/wiki/Greatest_common_divisor.
Published
2018-07-25
How to Cite
WANG, Huifang; ZHOU, Kang; ZHANG, Gexiang. Arithmetic Operations with Spiking Neural P Systems with Rules and Weights on Synapses. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 13, n. 4, p. 574-589, july 2018. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3265>. Date accessed: 05 july 2020. doi: https://doi.org/10.15837/ijccc.2018.4.3265.

Keywords

SN P Systems, Rules and Weights on Synapses, addition, multiplication, the greatest common divisor