Adaptive-Smith Predictor for Controlling an Automotive Electronic Throttle over Network

Constantin Caruntu, Alessandro Vargas, Leonardo Acho, Gisela Pujol


The paper presents a control strategy for an automotive electronic throttle, a device used to regulate the power produced by spark-ignition engines. Controlling the electronic throttle body is a difficult task because the throttle accounts strong nonlinearities. The difficulty increases when the control works through communication networks subject to random delay. In this paper, we revisit the Smith-predictor control, and show how to adapt it for controlling the electronic throttle body over a delay-driven network. Experiments were carried out in a laboratory, and the corresponding data indicate the benefits of our approach for applications.


Adaptive-Smith predictor, electronic throttle control, networked control systems, switching control

Full Text:



Astrom, K.J.; Hagglund, T. (2004); Revisiting the Ziegler-Nichols step response method for PID control, Journal of Process Control, 14, 635–650, 2004.

Balau, A.E.; Caruntu, C.F.; Lazar, C.(2011); Simulation and control of an electro-hydraulic actuated clutch, Mechanical Systems and Signal Processing, 25, 1911–1922, 2011.

Caruntu, C.F.; Lazar, C. (2014); Network delay predictive compensation based on timedelay modeling as disturbance. International Journal of Control, 87, 2012–2026, 2014.

Caruntu, C.F.; Lazar, M.; Gielen, R.H.; van den Bosch, P.P.J.; Di Cairano, S. (2013); Lyapunov based predictive control of vehicle drivetrains over CAN, Control Engineering Practice, 21, 1884–1898, 2013.

Chen, C.H.; Lin, C.L.; Hwang, T.S.(2007); Stability of networked control systems with time-varying delays, IEEE Communication Letters, 11, 270–272, 2007.

Deur, J.; Pavkovic, D.; Peric, N.; Jansz, M.; Hrovat, D.(2004); An electronic throttle control strategy including compensation of friction and limp-home effects, IEEE Transactions on Industry Applications, 40, 821–834, 2004.

di Bernardo, M.; di Gaeta, A.; Montanaro, U.; Olm, J.M.; Santini, S.(2013); Experimental validation of the discrete-time MCS adaptive strategy, Control Engineering Practice, 21, 847–859, 2013.

Jiao, X.; Zhang, J.; Shen, T. (2014); An adaptive servo control strategy for automotive electronic throttle and experimental validation, IEEE Transactions on Industrial Electronics, 61, 6275–6284, 2014.

Kim, D.; Peng, H.; Bai, S.; Maguire, J.M. (2007); Control of integrated powertrain with electronic throttle and automatic transmission, IEEE Transactions on Control Systems Technology, 15, 474–482, 2007.

Lai, C.L.; Hsu, P.L. (2010); Design the remote control system with the time-delay estimator and the adaptive Smith predictor, IEEE Transactions on Industrial Informatics, 6, 73–80, 2010.

Lee, K.C.; Kim, M.H.; Lee, S.; Lee, H.H. (2004); IEEE-1451-Based smart module for invehicle networking systems of intelligent vehicles, IEEE Transactions on Industrial Electronics, 51, 1150–1158, 2004.

Li, Y.; Yang, B.; Zheng, T.; Li, Y.; Cui, M.; Peeta, S. (2015); Extended-state-observer-based double-loop integral sliding-mode control of IEEE Transactions on Intelligent Transportation Systems, 16, 2501–2510, 2015.

Mahmoud, M.S.(2014); Control and Estimation Methods over Communication Networks, Springer International Publishing Switzerland, 2014.

Montanaro, U.; di Gaeta, A.; Giglio, V. (2014); Robust discrete-time MRAC with minimal controller synthesis of an electronic throttle body, IEEE/ASME Transactions on Mechatronics, 19, 524–537, 2014.

Natori, K.; Oboe, R.; Ohnishi, K. (2008); Stability analysis and practical design procedure of time delayed control systems with communication disturbance observer, IEEE Transactions on Industrial Informatics, 4, 185–197, 2008.

Natori, K.; Ohnishi, K. (2008); A design method of communication disturbance observer for time-delay compensation, taking the dynamic property of network disturbance into account, IEEE Transactions on Industrial Electronics, 55, 2152–2168, 2008.

Navet, N.; Song, Y.; Simonot-Lion, F.; Wilwert, C. (2005); Trends in automotive communication systems, Proceedings of the IEEE, 93, 1204–1223, 2005.

Normey-Rico, J.E.; Camacho, E.F. (2007); Control of dead-time processes, Advanced Textbooks in Control and Signal Processing, Springer-Verlag London, 2007.

de Oliveira Souza, F.; Mozelli, L.A.; de Oliveira, M.C.; Palhares, R.M. (2016); LMI International Journal of Control, 89(10), 1962–1971, 2016.

Pan, Y.; Ozguner, U.; Dagci, O.H. (2008); Variable-structure control of electronic throttle valve, IEEE Transactions on Industrial Electronics, 55, 3899–3907, 2008.

Panzani, G.; Corno, M.; Savaresi, S.M. (2013); On adaptive electronic throttle control for sport motorcycles, Control Engineering Practice, 21(1), 42 – 53, 2013.

Pavkovic, D.; Deur, J.; Janszb, M.; Peric, N. (2006); Adaptive control of Control Engineering Practice, 14(2), 121 – 136, 2006.

Podivilova, E.; Vargas, A.N.; Shiryaev, V.; Acho, L. (2016); Set-valued estimation of switching linear system: an application to an automotive throttle valve, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29(4), 755–762, 2016.

Pujol, G.; Vidal, Y.; Acho, L.; Vargas, A.N. (2016); Asymmetric modelling and control of an electronic throttle, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29, 192–204, 2016.

Repele, L.; Muradore, R.; Quaglia, D.; Fiorini, P. (2014); Improving performance of networked control systems by using adaptive buffering, IEEE Transactions on Industrial Electronics, 61, 4847–4856, 2014.

Rossi, C.; Tilli, A.; Tonielli, A. (2000); Robust control of a throttle body for drive by wire operation of automotive engines, IEEE Trans. Control Syst. Technol., 8(6), 993 –1002, 2000.

Sarkar, B.; Chakrabarti, A.; Ananthasuresh, G.K. (2017); Synthesis of feedback-based design concepts for sensors, Research in Engineering Design, 131–151, 2017.

Vargas, A.N.; Menegaz, H.M.T.; Ishihara, J.Y.; Acho, L.: (2016); Unscented Kalman filters for estimating the position of an automotive electronic throttle valve, IEEE Transactions on Vehicular Technology, 65(6), 4627–4632, 2016.

Vasak, M.; Baotic, M.; Petrovic, I.; Peric, N. (2007); Hybrid theory-based time-optimal control of an electronic throttle, IEEE Transactions on Industrial Electronics, 54, 1483– 1494, 2007.

Yuan, X.; Wang, Y. (2009); A novel electronic-throttle-valve controller based on approximate model method, IEEE Trans. Industrial Electronics, 56(3), 883–890, 2009.

Zhang, S.; Yang, J.J.; Zhu, G.G. (2015); LPV modeling and mixed constrained H2=H1 control of an electronic throttle, IEEE/ASME Transactions on Mechatronics, 20, 2120– 2132, 2015.


Copyright (c) 2018 Constantin Caruntu, Alessandro Vargas, Leonardo Acho, Gisela Pujol

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]

INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2016: IF=1.374. .

IJCCC is indexed in Scopus from 2008 (SNIP2016 = 0.701, SJR2016 =0.319):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.