Enhanced Interconnection Model in Geographically Interdependent Networks

  • Diego F. Rueda Universitat de Girona
  • Eusebi Calle Institute of Informatics and Applications Universitat de Girona P-IV Building, Campus Montilivi, Girona, Spain
  • Xiangrong Wang Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology Mekelweg 4, Delft, The Netherlands
  • Robert E. Kooij Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology Mekelweg 4, Delft, The Netherlands

Abstract

Interconnection between telecommunication networks and other critical infrastructures is usually established through nodes that are spatially close, generating a geographical interdependency. Previous work has shown that in general, geographically interdependent networks are more robust with respect to cascading failures when the interconnection radius (r) is large. However, to obtain a more realistic model, the allocation of interlinks in geographically interdependent networks should consider other factors. In this paper, an enhanced interconnection model for geographically interdependent networks is presented. The model proposed introduces a new strategy for interconnecting nodes between two geographical networks by limiting the number of interlinks. Results have shown that the model yields promising results to maintain an acceptable level in network robustness under cascading failures with a decrease in the number of interlinks.

References

[1] Andersson, G. et. al. (2005); Causes of the 2003 Major Grid Blackouts in North America and Europe, and Recommended Means to Improve System Dynamic Performance, IEEE Trans. on Power Systems, 20 (4), 1922-1928, 2005.
https://doi.org/10.1109/TPWRS.2005.857942

[2] Buldyrev, S. V.; Parshani, R.; Paul G.; Stanley, H. E.; Havlin, S. (2010); Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025-1028, 2010.
https://doi.org/10.1038/nature08932

[3] Erdos, P.; Renyi, A. (1960); On the evolution of random graphs, Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17-61, 1960.

[4] Gao, J.; Buldyrev, S. V.; Stanley, H. E.; Havlin, S. (2012); Networks formed from interdependent networks, Nat. Phys., 8, 40-48, 2012.

[5] Iyer, S.; Killingback, T.; Sundaram, B.; Wang, Z. (2013); Attack robustness and centrality of complex networks, PLoS ONE, 8 (4), e59613, 2013.
https://doi.org/10.1371/journal.pone.0059613

[6] Ji, X.; Wang, B.; Liu, D.; Chen, G.; Tang, F.; Wei, D.; Tu, L. (2016); Improving interdependent networks robustness by adding connectivity links, Physica A, 444, 9-19, 2016.
https://doi.org/10.1016/j.physa.2015.10.010

[7] Li, X.; Wu, H.; Scoglio, C.; Gruenbacher, D. (2015); Robust allocation of weighted dependency links in cyber-physical networks, Physica A, 433, 316-327, 2015.
https://doi.org/10.1016/j.physa.2015.04.006

[8] Martín-Hernández, J.; Wanga, H.; Van Mieghem, P.; D'Agostino, G. (2014); Algebraic connectivity of interdependent networks, Physica A, 404, 92-105, 2014.
https://doi.org/10.1016/j.physa.2014.02.043

[9] Neumayer, S.; Modiano, E. (2016); Network Reliability under Geographically Correlated Line and Disk Failure Models, Computer Networks, 94, 14-28, 2016.
https://doi.org/10.1016/j.comnet.2015.11.025

[10] Ouyang, M. (2014); Review on modeling and simulation of interdependent critical infrastructure systems, Reliability Engineering & System Safety, 121, 43-60, 2014.
https://doi.org/10.1016/j.ress.2013.06.040

[11] Rinaldi, S. M.; Peerenboom, J.P.; Kelly, T. K. (2001); Identifying, Understanding, and Analyzing Critical Infrastructure Dependencies, IEEE Control Systems Magazine, 21 (6), 11-23, 2001.
https://doi.org/10.1109/37.969131

[12] Rueda, D. F.; Calle E. (2017), Using interdependency matrices to mitigate targeted attacks on interdependent networks: A case study involving a power grid and backbone telecommunications networks, International Journal of Critical Infrastructure Protection, 17, 3-12, 2017.
https://doi.org/10.1016/j.ijcip.2016.11.004

[13] Rueda, D. F.; Calle, E.; Marzo, J. L. (2017); Robustness Comparison of 15 Real Telecommunication Networks: Structural and Centrality Measurements, J. Netw. Syst. Manage, 25 (2), 269-289, 2017.
https://doi.org/10.1007/s10922-016-9391-y

[14] Sterbenz, J.P.G.; Hutchison, D.; Çetinkaya, E.K.; Jabbar, A.; Rohrer J.P.; Scholler, M.; Smith, P. (2010); Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines, Computer Networks, 54(8), 1245-1265, 2010.
https://doi.org/10.1016/j.comnet.2010.03.005

[15] Schweitzer, F.; Fagiolo, G.; Sornette, D.; Vega-Redondo, F.; Vespignani, A., White, D. R. (2009); Economic Networks: The New Challenges, Science, 325 (5939), 422-425, 2009.
https://doi.org/10.1126/science.1173644

[16] Wang, X.; Kooij, R.E.; Van Mieghem, P. (2016); Modeling region-based interconnection for interdependent networks, Phys. Rev. E., 94, 042315(14), 2016.

[17] Yagan, O.; Qian, D.; Zhang, J.; Cochran, D. (2012); Optimal allocation of interconnecting links in cyber-physical systems: Interdependence, cascading failures, and robustness, EEE Trans. Parallel Distrib. Syst., 23 (9), 1708-1720, 2012.
https://doi.org/10.1109/TPDS.2012.62
Published
2018-07-25
How to Cite
RUEDA, Diego F. et al. Enhanced Interconnection Model in Geographically Interdependent Networks. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 13, n. 4, p. 537-549, july 2018. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3090>. Date accessed: 23 jan. 2022.

Keywords

Cascading failures, interdependent critical infrastructures, robustness, region-based interconnection.