An Improved Local Descriptor based Object Recognition in Cluttered 3D Point Clouds

  • Xiaoni Liu Jilin University
  • Yinan Lu Jilin University
  • Tieru Wu Jilin University
  • Tianwen Yuan Jilin University

Abstract

Object recognition in three-dimensional point clouds is a new research topic in the field of computer vision. Numerous nuisances, such as noise, a varying density, and occlusion greatly increase the difficulty of 3D object recognition. An improved local feature descriptor is proposed to address these problems in this paper. At each feature point, a local reference frame is established by calculating a scatter matrix based on the geometric center and the weighted point-cloud density of its neighborhood, and an improved normal vector estimation method is used to generate a new signature of histograms of orientations (SHOT) local-feature descriptor. The geometric consistency and iterative closest point method realize 3D model recognition in the point-cloud scenes. The experimental results show that the proposed SHOT feature-extraction algorithm has high robustness and descriptiveness in the object recognition of 3D local descriptors in cluttered point-cloud scenes.

References

[1] Aldoma, A.; Marton, Z.; Tombari, F.; Wohlkinger, W. (2012); Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation, Robotics and Automation Magazine IEEE, 19, 80-91, 2012.
https://doi.org/10.1109/MRA.2012.2206675

[2] Aldoma, A.; Tombari, F.; Rusu, R.; Vincze, M. (2012); OUR-CVFH - Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose Estimation, LNCS, 7476, 113-122, 2012.

[3] Arbeiter, G.; Fuchs, S.; Bormann, R.; Fischer, J.; Verl, A. (2012); Evaluation of 3D feature descriptors for classification of surface geometries in point clouds, Proceedings of IROS, 1644-1650, 2012.

[4] Besl, P.; Mckay, N. (1992); A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256, 1992.
https://doi.org/10.1109/34.121791

[5] Bro, R.; Acar, E.; Kolda, T. (2008); Resolving the sign ambiguity in the singular value decomposition, Journal of Chemometrics, 22, 135-140, 2008.
https://doi.org/10.1002/cem.1122

[6] Ceron, A.; Prieto, F. (2013); Evaluating and Comparing of 3D Shape Descriptors for Object Recognition, LNCS, 8034, 484-492, 2013.

[7] Chua, C.; Jarvis, R. (1997); Point signatures: a new representation for 3D object recognition, International Journal of Computer Vision, 25, 63-85, 1997.
https://doi.org/10.1023/A:1007981719186

[8] Frome, A.; Huber, D.; Kolluri, R.; Blow, T.; Malik, J. (2004); Recognizing Objects in Range Data Using Regional Point Descriptors, Lecture Notes in Computer Science, 3023, 224-237, 2004.
https://doi.org/10.1007/978-3-540-24672-5_18

[9] Guo, Y.; Sohel, F.; Bennamoun, M.; Lu , M.; Wan, J. (2013); Rotational projection statistics for 3d local surface description and object recognition, International Journal of Computer Vision, 105, 63-86, 2013.
https://doi.org/10.1007/s11263-013-0627-y

[10] Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, Mu.; Wan, J. (2014); 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 2270-2287, 2014.
https://doi.org/10.1109/TPAMI.2014.2316828

[11] Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. (2014); Performance Evaluation of 3D Local Feature Descriptors, Proceedings of ACCV, 178-194, 2014.

[12] Guo, Y.; Sohel, F.; Bennamoun, M.; Lu, M.; Wan, J. (2013); TriSI: A Distinctive Local Surface Descriptor for 3D Modeling and Object Recognition, Proceedings of GRAPP, 86-93, 2013.

[13] Guo, Y.; Sohel, F.; Bennamoun, M.; Wan, J.; Lu, M; A Novel Local Surface Feature for 3D Object Recognition under Clutter and Occlusion, Information Sciences, 293, 196-213, 2014.
https://doi.org/10.1016/j.ins.2014.09.015

[14] Johnson, A.; Hebert, M. (1999); Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 433-449, 1999.
https://doi.org/10.1109/34.765655

[15] Liao,S.; Chung, ACS. (2010); A novel multi-layer framework for non-rigid image registration, Proceedings of ISBI, 344-347, 2010.

[16] Lin, C.; Chen, J.; Su, P.; Chen, C. (2014); Eigen-feature analysis of weighted covariance matrices for LiDAR point cloud classification, ISPRS Journal of Photogrammetry and Remote Sensing, 94, 70-79, 2014.
https://doi.org/10.1016/j.isprsjprs.2014.04.016

[17] Mian, A.; Bennamoun, M.; Owens, R. (2006); Three-dimensional model-based object recognition and segmentation in cluttered scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1584-1601, 2006.
https://doi.org/10.1109/TPAMI.2006.213

[18] Mian, A.; Bennamoun, M.; Owens, R. (2010); On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes, International Journal of Computer Vision, 89, 348-361, 2010.
https://doi.org/10.1007/s11263-009-0296-z

[19] Rusu, R.; Blodow, N.; Marton, Z.; Beetz, M. (2008); Aligning point cloud views using persistent feature histograms, Proceedings of IROS, 3384-3391, 2008.

[20] Rusu, R.; Blodow, N.; Beetz, M. (2009); Fast Point Feature Histograms (FPFH) for 3D registration, Proceedings of ICRA, 3212-3217, 2009.

[21] Rusu, R.; Holzbach, A.; Beetz, M.; Bradski, G. (2009); Detecting and segmenting objects for mobile manipulation, Proceedings of ICCVW, 47-54, 2009.

[22] Rusu, R. (2010); Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments, KI - Kunstliche Intelligenz, 24, 345-348, 2010.

[23] Tombari, F.; Salti, S.; Stefano, L. (2010); Unique signatures of histograms for local surface description, Proceedings of ECCV, 356-369, 2010.

[24] Wohlkinger, W.; Vincze, M. (2011) ; Ensemble of shape functions for 3D object classification, Proceedings of IEEE RO-BIO, 2987-2992, 2011.

[25] Yamany, SM.; Farag, AA. (2002); Surface signatures: an orientation independent free-form surface representation scheme for the purpose of objects registration and matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1105-1120, 2002.
https://doi.org/10.1109/TPAMI.2002.1023806

[26] Zhang, Z. (1994); Iterative point matching for registration of free-form curves and surfaces, International Journal of Computer Vision, 13, 119-152, 1994.
https://doi.org/10.1007/BF01427149

[27] Zhong, Y. (2009); Intrinsic shape signatures: A shape descriptor for 3D object recognition, Proceedings of ICCVW, 689-696, 2009.
https://doi.org/10.1109/ICCVW.2009.5457637

[28] PCL; pointclouds.org/.

[29] 3D Keypoint Detection Benchmark; www.vision.deis.unibo.it/keypoints3d/.

[30] The Stanford 3D Scanning Repository; http://www.vision.deis.unibo.it/keypoints3d/.

[31] SHOT: Unique Signatures of Histograms for Local Surface Description; www.vision.deis. unibo.it/research/80-shot.
Published
2018-04-13
How to Cite
LIU, Xiaoni et al. An Improved Local Descriptor based Object Recognition in Cluttered 3D Point Clouds. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 13, n. 2, p. 221-234, apr. 2018. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/3010>. Date accessed: 26 sep. 2020. doi: https://doi.org/10.15837/ijccc.2018.2.3010.

Keywords

3D point cloud, local feature, object recognition, noise, density variation