SHRP - Secure Hybrid Routing Protocol over Hierarchical Wireless Sensor Networks

Balaubramanian Muthusenthil, Hyunsung Kim

Abstract


A data collection via secure routing in wireless sensor networks (WSNs) has given attention to one of security issues. WSNs pose unique security challenges due to their inherent limitations in communication and computing, which makes vulnerable to various attacks. Thus, how to gather data securely and efficiently based on routing protocol is an important issue of WSNs. In this paper, we propose a secure hybrid routing protocol, denoted by SHRP, which combines the geographic based scheme and hierarchical scheme. First of all, SHRP differentiates sensor nodes into two categories, nodes with GPS (NG) and nodes with antennas (NA), to put different roles. After proposing a new clustering scheme, which uses a new weight factor to select cluster head efficiently by using energy level, center weight and mobility after forming cluster, we propose routing scheme based on greedy forwarding. The packets in SHRP are protected based on symmetric and asymmetric cryptosystem, which provides confidentiality, integrity and authenticity. The performance analyses are done by using NS2 and show that SHRP could get better results of packet loss rate, delivery ratio, end to end delay and network lifetime compared to the well known previous schemes.

Keywords


Wireless Sensor Network (WSN), routing protocol, information security, anonymity, greedy forwarding.

Full Text:

PDF

References


Adnan A. I., Hanapi Z. M., Othman M. , Zukarnain Z. A. (2017); A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks, PloS one, 12(1), p. e0170273, 2017.
https://doi.org/10.1371/journal.pone.0170273

Akyildiz I. F. , Su W., Sankarasubramaniam Y., Cayirci E. (2002); A survey on sensor networks, IEEE Communications magazine, 40(8), 102–114, 2002.
https://doi.org/10.1109/MCOM.2002.1024422

Alasem R., Reda A., Mansour M. (2011); Location based energy-efficient reliable routing protocol for wireless sensor networks, Recent Researches in Communications, Automation, Signal processing, Nanotechnology, Astronomy and Nuclear Physics, WSEAS Press, Cambridge, UK, 2011.

Almeida F. R., Brayner A., Rodrigues J. J. P. C., Maia J. E. B. (2017); Improving Multidimensional Wireless Sensor Network Lifetime Using Pearson Correlation and Fractal Clustering, Sensors, 17(6), E1317. doi: 10.3390/s17061317, 2017.
https://doi.org/10.3390/s17061317

Baker D.J., Ephremides A, Flynn J. A. (1984); The design and simulation of a mobile radio network with distributed control, IEEE Journal on selected areas in communications, 2(1), 226–237, 1984.
https://doi.org/10.1109/JSAC.1984.1146043

Bandyopadhyay S., Coyle E. (2003): An energy efficient hierarchical clustering algorithm for wireless sensor networks, INFOCOM 2003 - Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, 3, 1713–1723, 2003.

Bohge M., Trappe W. (2003); An authentication framework for hierarchical ad hoc sensor networks, Proceedings of the 2nd ACM workshop on Wireless security, 79–87, 2003.

Chang J.Y., Ju P.H. (2012); An efficient cluster-based power saving scheme for wireless sensor networks, EURASIP Journal on Wireless Communications and Networking, 2012:172,
https://doi.org/10.1186/1687-1499-2012-172, 2012.
https://doi.org/10.1186/1687-1499-2012-172

Han G., Jiang X., Qian. A., Rodrigues J. J.P.C., Cheng L., (2014); A comparative study of routing protocols of heterogeneous wireless sensor networks, The Scientific World Journal, Article ID 415415, 1–11, 2014.

Handy M.J., Haase M., Timmermann D. (2002); Low energy adaptive clustering hierarchy with deterministic cluster-head selection, 4th International Workshop on Mobile and Wireless Communications Network, 2002, 368–372, 2002.

Heinzelman W.B., Chandrakasan A.P., Balakrishnan H. (2002); An application-specific protocol architecture for wireless microsensor networks, IEEE Transactions on wireless com- munications, 1(4), 660–670, 2002.
https://doi.org/10.1109/TWC.2002.804190

Heinzelman W. B., Chandrakasan A. P., Balakrishnan H. (2000); Energy-efficient communication protocol for wireless microsensor networks, Proceedings of the 33rd annual Hawaii international conference on System sciences, IEEE, 1-10, 2000.

Ibriq J., Mahgoub I. (2006); A secure hierarchical routing protocol for wireless sensor networks, 10th IEEE Singapore International Conference on Communication systems, ICCS 2006, IEEE, 1–6, 2006.

Jung S., Chung Y. (2007); An interest-diffused clustering routing algorithm by bitmap in wireless sensor networks, 5th ACIS International Conference on Software Engineering Research, Management & Applications, - SERA 2007, IEEE, 697–701, 2007.

Le E., Montez C., Moraes R., Portugal P., Vasques F. (2017); Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods, Sensors, 17(5), 1049, 2017.
https://doi.org/10.3390/s17051049

Mehmood A., Lloret J., Noman M., Song H. (2015); Improvement of the Wireless Sensor Network Lifetime Using LEACH with Vice-Cluster Head, Ad Hoc & Sensor Wireless Networks, 28(1-2), 1–17, 2015.

Misbahuddin M., Sari R. F. (2016); Initial Phase Proximity for Reachback Firefly Synchronicity in WSNs: Node Clustering, International Journal of Computers Communications & Control, 12(1), 90–102, 2016.
https://doi.org/10.15837/ijccc.2017.1.2568

Mostafaei H., Shojafar M. (2015); A new meta-heuristic algorithm for maximizing lifetime of wireless sensor networks, Wireless Personal Communications, 82(2), 723–742, 2015.
https://doi.org/10.1007/s11277-014-2249-2

Nagpal R., Coore D. (1998); An algorithm for group formation in an amorphous computer, Proc. 10th International Conference on Parallel and Distributed Computing Systems (PDCS'98), 1-4, 1998.

Ndiaye M., Hancke G. P., Abu-Mahfouz A. M. (2017); Software Defined Networking for Improved Wireless Sensor Network Management: A Survey, Sensors, 17(5), pii: E1031. doi: 10.3390/s17051031, 2017.
https://doi.org/10.3390/s17051031

Oliveira L. B., Ferreira A., Vilaca M. A., Wong H. C., Bern M., Dahab R., Loureiro A. A. F. (2007); SECLEACH - On the security of clustered sensor networks, Signal Processing, 87(12), 2882–2895, 2007.
https://doi.org/10.1016/j.sigpro.2007.05.016

Oliveira. L. B., Wong. H. C., Bern. M., Dahab. R., Loureiro. A. A. F. (2006); SecLEACH-A random key distribution solution for securing clustered sensor networks, Fifth IEEE International Symposium on Network Computing and Applications, NCA 2006, IEEE, 145–154, 2006.

Parno B., Luk M., Gaustad E., Perrig A. (2006); Secure sensor network routing: A clean-slate approach, Proceedings of the 2006 ACM CoNEXT conference, ACM, 1-11, 2006.

Song X. , Gong Y. , Jin D. , Li Q. , Jing H. (2017); Coverage Hole Recovery Algorithm Based on Molecule Model in Heterogeneous WSNs, International Journal of Computers Communications & Control, 12(4), 562–576, 2017.
https://doi.org/10.15837/ijccc.2017.4.2896

Srinath R., Reddy A. V., Srinivasan R. (2007); AC: Cluster based secure routing protocol for WSN, Third International Conference on Networking and Services, 2007. ICNS., IEEE, 45–45, 2007.

Tubaishat J.M., Yin J., Panja B., Madria S. (2004); A secure hierarchical model for sensor network, ACM Sigmod Record, 33(1), 7–13, 2004.
https://doi.org/10.1145/974121.974123

Wang K., Abu Ayyash S., Little T. D. C., Basu P. (2005); Attribute-based clustering for information dissemination in wireless sensor networks, Proceeding of 2nd annual IEEE communications society conference on sensor and ad hoc communications and net- works (SECON'05), Santa Clara, CA, 2005.

Wei D., Jin Y., Vural S., Moessner K., Tafazolli R, (2011); An energy-efficient clustering solution for wireless sensor networks, IEEE transactions on wireless communications, 10(11), 3973–3983, 2011.
https://doi.org/10.1109/TWC.2011.092011.110717

Xu K., Gerla M. (2002); A heterogeneous routing protocol based on a new stable clustering scheme, MILCOM 2002. Proceedings IEEE, 2, 838–843, 2002.

Yoon M. S., Kim H., Lee S. W. (2008); Efficient dual-layered hierarchical routing schueme for wireless sensor networks, Proceedings of International Conference on National Competitiveness and IT, 507–511, 2008.

Younis O., Fahmy S. (2004); HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks, IEEE Transactions on mobile computing, 3(4), 366– 379, 2004.
https://doi.org/10.1109/TMC.2004.41

Yu M. , Leung K.K., Malvankar A. (2007); A dynamic clustering and energy efficient routing technique for sensor networks, IEEE Transactions on wireless communications, 6(8), 3069- 3079, 2007.
https://doi.org/10.1109/TWC.2007.06003

Zong Z., Manzanares A., Ruan X., Qin X. (2011); EAD and PEBD: two energyaware duplication scheduling algorithms for parallel tasks on homogeneous clusters, IEEE Transactions on Computers, 60(3), 360–374, 2011.
https://doi.org/10.1109/TC.2010.216

Zhou Q., Li J. (2009); Secure routing protocol cluster-gene-based for wireless sensor networks, 1st International Conference on Information Science and Engineering (ICISE), IEEE, 2009, 4098–4102, 2009
https://doi.org/10.1109/ICISE.2009.1049




DOI: http://dx.doi.org/10.15837/ijccc.2017.6.2909



Copyright (c) 2017 Balaubramanian Muthusenthil, Hyunsung Kim

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]


INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (A. Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (A. Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006). IF=1.374 in JCR2016.

IJCCC is indexed in Scopus from 2008 (SNIP2016 = 0.701, SJR2016 =0.319):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.