A Singleton Type-1 Fuzzy Logic Controller for On-Line Error Compensation During Robotic Welding

  • Ignacio Davila COMIMSA - Posgrado Interinstitucional en Ciencia y Tecnologia (PICYT) Ciencia y Tecnologia No 790 Col. Saltillo 400, C.P. 25290 Saltillo, Coahuila. Mexico.
  • Ismael Lopez-Juarez Robotics and Advanced Manufacturing Group Centro de Investigacion y de Estudios Avanzados del IPN (CINVESTAV) Av. Ind. Metalurgica 1062, P. Ind. Saltillo-Ramos Arizpe, C.P. 25900 Ramos Arizpe, Coahuila, Mexico *Corresponding author:
  • Gerardo Maximiliano Mendez Instituto Tecnologico de Nuevo Leon (ITNL) Av. Eloy Cavazos 2001 Col. Tolteca, C.P. 67175 Guadalupe, Nuevo Leon, Mexico
  • Roman Osorio-Comparan Instituto de Investigaciones en Matematicas Aplicadas y Sistemas Universidad Nacional Autonoma de Mexico (UNAM) Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City
  • Gaston Lefranc Escuela de Ingenieria Electrica Pontificia Universidad Catolica de Valparaiso Avda Brasil 2950, Valparaíso, Chile 2430000
  • Claudio Cubillos Escuela Ingenieria Informatica Pontificia Universidad Catolica de Valparaiso Avda Brasil 2950, Valparaíso, Chile 2430000

Abstract

During robot welding operations in the manufacturing industry there is a need to modify on-line the welding path due to a mismatch in the position of the components to be welded. These positioning errors are due to multiple factors such as ageing of the components in the conveyor system, clamp fixtures, disturbances, etc. Therefore, robot reprogramming is needed which requires a stop in the production line and consequently an increment in production costs. This article is an extension of [1]a and presents an alternative solution to this problem that involves the use of structured lighting using a low-cost laser beam, a CMOS camera and a Gaussian singleton fuzzy logic controller. To validate the proposed control system, a robotic cell was designed using an industrial KUKA KR16 robot for welding metallic plates. The method was evaluated experimentally under lateral and vertical positioning errors.

References

[1] Ignacio Davila-Rios, Ismael Lopez-Juarez, Gerardo M. Mendez, Roman Osorio-Comparan, Gaston Lefranc and Claudio Cubillos (2016); A Fuzzy Approach for on-line Error Compensation During Robotic Welding, Computers Communications and Control (ICCCC), 2016 6th International Conference on, ISBN 978-1-5090-1735-5, IEEE Xplore, DOI:10.1109/ICCCC.2016.7496766, 264- 270.
https://doi.org/10.1109/ICCCC.2016.7496766

[2] Menno de Graaf, Ronald Aarts, Ben Jonker, Johan Meijer (2010); Real-time seam tracking for robotic laser welding using trajectory-based control, Control Engineering Practice, 18(8):944-953.
https://doi.org/10.1016/j.conengprac.2010.04.001

[3] Tero Santti, Jonne K. Poikonen, Olli Lahdenoja, Mika Laiho, Ari Paasio (2015); Online seam tracking for laser welding with a vision chip and FPGA enabled camera system, IEEE International Symposium on Circuits and Systems (ISCAS), May 2015, 1985 - 1988.

[4] Jinchao Liu, Zhun Fan, Srren Ingvor Olsen, Kim Hardam Christensen, Jens Klcstrup Kristensen (2015); A Real-time Passive Vision System for Robotic Arc Welding, IEEE International Conference on Automation Science and Engineering (CASE), Aug. 2015, 389-394.

[5] T. Ngo, Y. Wang, T.L. Mai, M.H. Nguyen, J. Chen (2012); Robust Adaptive Neural-Fuzzy Network Tracking Control for Robot Manipulator, International Journal of Computer Communications & Control, ISSN 1841-9836, 7(2):341-352.

[6] I. Hartley and A. Zisserman (2004); Multiple View Geometry in Computer Vision, Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[7] J. M. Mendel (2001); Uncertain rule-based fuzzy logic systems: introduction and new directions, Prentice-Hall, Upper Saddle River, NJ, 2001.

[8] John Yen, Reza Langari (1998); Fuzzy Logic: Intelligence, Control and Information, Prentice- Hall), ISBN 0135258170, 1998.

[9] Martín del Br io B, Sanz Molina A. (2006); Redes Neuronales y Sistemas Borrosos, 3rd edition, ISBN 978-84-7897-743-7, RA-MA, 2006.

[10] Montgomery D C. (2007); Design and Analysis of Experiments, John Wiley Sons, 6th edition, ISBN-10: 047148735X, 2007.
Published
2017-02-28
How to Cite
DAVILA, Ignacio et al. A Singleton Type-1 Fuzzy Logic Controller for On-Line Error Compensation During Robotic Welding. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 12, n. 2, p. 201-216, feb. 2017. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2877>. Date accessed: 05 july 2020. doi: https://doi.org/10.15837/ijccc.2017.2.2877.

Keywords

Gas Metal Arc Welding (GMAW), industrial robotics, artificial vision, robot path control, fuzzy logic