Feature Analysis to Human Activity Recognition
Keywords:
human activity recognition, feature extraction, feature selection, machine learningAbstract
Human activity recognition (HAR) is one of those research areas whose importance and popularity have notably increased in recent years. HAR can be seen as a general machine learning problem which requires feature extraction and feature selection. In previous articles different features were extracted from time, frequency and wavelet domains for HAR but it is not clear that, how to determine the best feature combination which maximizes the performance of a machine learning algorithm. The aim of this paper is to present the most relevant feature extraction methods in HAR and to compare them with widely-used filter and wrapper feature selection algorithms. This work is an extended version of [1]a where we tested the efficiency of filter and wrapper feature selection algorithms in combination with artificial neural networks. In this paper the efficiency of selected features has been investigated on more machine learning algorithms (feed-forward artificial neural network, k-nearest neighbor and decision tree) where an independent database was the data source. The result demonstrates that machine learning in combination with feature selection can overcome other classification approaches.References
Suto, J.; Oniga, S.; Pop Sitar, P. (2016); Comparison of wrapper and filter feature selection algorithms on human activity recognition, Computers Communications and Control(ICCCC), 2016 6th International Conference on, IEEE Xplore, e-ISSN 978-1-5090-1735-5, 124-129. https://doi.org/10.1109/ICCCC.2016.7496749
Chernbumroong, S.; Cang, S.; Atkins, A.; Yu, H. (2013); Elderly activities recognition and classification for applications in assisted living. Expert Systems with Applications, ISSN: 0957-4174, 40(5):1662-1676. https://doi.org/10.1016/j.eswa.2012.09.004
Sebestyen, G.; Tirea, A.; Albert, R. (2012); Monitoring human activity trough portable devices. Carpathian Journal of Electronic and Computer Engineering, ISSN 2343-8908, 5(1):101-106.
Gao, L; Bourke, A.K.; Nelson, J. (2014); Evaluation of accelerometer based multi sensor versus single sensor activity recognition systems. Medical Engineering & Physics, ISSN: 1350-4533, , 36(6):779-785. https://doi.org/10.1016/j.medengphy.2014.02.012
Maurer, U.; Smailagic, A.; Siewiorek, D,P; Deisher, M. (2006); Activity recognition and monitoring using multiple sensors on different body positions. International Workshop on Wearable and Implementable Body Sensor Networks, ISBN: 0-7695-2547-4, Cambridge, USA, 112-116. https://doi.org/10.1109/BSN.2006.6
Orha, I.; Oniga, S. (2015); Wearable sensor network for activity recognition using inertial sensors, Carpathian Journal of Electronic and Computer Engineering, ISSN 2343-8908, 8(2):3-6.
Yang, A.Y.; Jafari, L.; Systry, S.S.; Bajcsy, R. (2009); Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments, ISSN 1876-1372, DOI: 10.3233/AIS-2009-0016, 1(1):1-5.
Preece, J.S.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D. (2009); A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Transactions on Biomedical Engineering, ISSN: 1558-2531, 56(3):871-879. https://doi.org/10.1109/TBME.2008.2006190
Khan, A.M.; Lee, Y.K.; Lee, S.Y.; Kim, T.S. (2010); A triaxial accelerometer based physical activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Transactions on Information Technology in Biomedicine, ISSN: 1558-0032, 14(5):1166-1172. https://doi.org/10.1109/TITB.2010.2051955
Oniga, S.; Suto, J. (2015); Optimal recognition method of human activities using artificial neural networks. Measurement Science Review, ISSN 1335-8871, DOI: 10.1515/msr-2015- 0044, 15(5):323-327.
Oniga, S., Suto, J. (2014); Human activity recognition using neural networks. 15th International Carpathian Control Conference, ISBN: 978-1-4799-3528-4, DOI: 10.1109/CarpathianCC. 2014.6843636, Velke Karlovice, Czech Republic, 403-406.
Yang, J.Y.; Wang, J.S.; Chen, Y.P. (2008); Using acceleration measurements for activity recognition: an effective learning algorithm for constructing neural classifiers. Pattern Recognition Letters, ISSN: 0167-8655, 29(16):2213-2220. https://doi.org/10.1016/j.patrec.2008.08.002
Duarte, F.; Lourenco, A.; Abrantes, A. (2014); Classification of physical activities using a smartphone: evaluation study using multiple users. Procedia Technology, ISSN: 2212-0173, 17(1):239-247. https://doi.org/10.1016/j.protcy.2014.10.234
Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. (2006); Implementation of a real time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, ISSN: 1558-0032, 10(1):156-167. https://doi.org/10.1109/TITB.2005.856864
Lara, D.O.; Labrador, M.A. (2013); A survey on human activity recognition using wearable sensors. IEEE Communications Survey & Tutorials, ISSN: 1553-877X, 15(3):1192-1209. https://doi.org/10.1109/SURV.2012.110112.00192
Godfrey, A.; Conway, R.; Meagher, D.; Olaighin, G. (2008); Direct measurement of human movement by accelerometry. Medical Engineering & Physics, ISSN: 1350-4533, 30(10):1364-1386. https://doi.org/10.1016/j.medengphy.2008.09.005
Bayat, A.; Pomplun, M.; Tran, D.A. (2014); A study on human activity recognition using accelerometer data from smartphones. Procedia Computer Science, ISSN: 1877-0509, 34(1):450-457. https://doi.org/10.1016/j.procs.2014.07.009
Kavanagh, J.J.; Menz, B.H. (2008); Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture, ISSN: 0966-6362, 28(1):1-15. https://doi.org/10.1016/j.gaitpost.2007.10.010
Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J.M. (2015); A survey of online activity recognition using mobile phones. Sensors, ISSN 1424-8220, 15(1):2059-2085. https://doi.org/10.3390/s150102059
Suto, J.; Oniga, S.; Buchman, A. (2015); Real time human activity monitoring. Annales Mathematicae et Informaticae, ISSN 1787-6117, 44(1):187-196.
Cheng, C.H.; Wang, P.S.P. (2005); Handbook of Pattern Recognition and Computer Vision, 3th ed., World Scientific, ISBN 978-981-4505-21-5.
Liu, H.; Motoda, H.; Setiono, R.; Zhao, Z. (2010); Feature selection: an ever evolving frontier in data mining, 4th Workshop on Feature Selection in Data Mining, ISSN 1533- 7928, Hyderabad, India, 4-13.
Liu, H.; Motoda, H. (2008); Computational Methods of Feature Selection, CRC Press Taylor Francis Group, ISBN 978-158-488-878-9.
Hall, M.A.; Smith, L.A. (1999); Feature selection for machine learning: Comparing a correlation based filter approach to the wrapper, Florida Artificial Intelligence Symposium, Florida, ISBN 978-1-57735-756-8, USA, 235-239.
Saeys, Y.; Inza I.; Larranaga P. (2007); A review of feature selection techniques in bioinformatics, Bioinformatics, DOI: 10.1093/bioinformatics/btm344, ISSN 1460-2059, 23(19):2507- 2517. https://doi.org/10.1093/bioinformatics/btm344
Jatoba, C.L.; Grobmann, U.; Kunze, U.; Ottenbacher J.; Stork, W. (2008); Context-aware mobile health monitoring: Evaluation of different pattern recognition methods for classification of physical activity. 30th Annual International IEEE EMBS Conference, ISBN: 978-1-4244-1814-5, DOI: 10.1109/IEMBS.2008.4650398, Vancouver, Canada, 5250-5253. https://doi.org/10.1109/IEMBS.2008.4650398
Zhao, Z.; Morstatte, F.; Sharma, S.; Alelyani, S.; Anand, A.; Liu, H. (2011); Advancing feature selection research- ASU feature selection repository. Technical Report, Arizona State University, http : ==featureselection:asu:edu=old=featureselectiontechreport:pdf
Oniga, S.; Suto, J. (2016); Activity recognition in adaptive assistive systems using artificial neural networks. Elektronika ir Elektrotechnika, ISSN: 2029-5731, DOI: http://dx.doi.org/10.5755/j01.eee.22.1.14112, 22(1):68-72. https://doi.org/10.5755/j01.eee.22.1.14112
Pinardi, S.; Bisiani, R. (2010); Movement recognition with intelligent multisensor analysis, a lexical approach. 6th International Conference on Intelligent Environments, ISBN 978-1- 60750-639-3, Kuala Lumpur, Malaysia, 170-177.
Su, B.; Tang, Q.; Wang, G.; Sheng, M. (2016); The recognitions of human daily actions with wearable motion sensor system, Lecture Notes in Computer Science: Transactions on Edutainment XII, ISBN 978-3-662-50544-1, 9292(1):68- 77.
Ertugrul, O.F.; Kaya, Y. (2016); Determining the optimal number of body-worn sensors for human activity recognition. Soft Computing, ISSN 1433-7479, DOI: 10.1007/s00500-016- 2100-7, 20(2):1-8.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.