A Forward-connection Topology Evolution Model in Wireless Sensor Networks

  • Changlun Zhang Science School, Beijing University of Civil Engineering and Architecture Beijing, China
  • Chao Li Beijing Key laboratory of Communication and Information Systems,Beijing Jiaotong University Beijing, China
  • Nan Ning Science School, Beijing University of Civil Engineering and Architecture Beijing, China

Abstract

The stability and reliability of the topology structure play an important role in the efficiency of the data collecting for wireless sensor networks. In this paper, a topology evolution model is proposed. The model considers the directionality of the data flow, and adopts the forward connectionism to ensure the neighbor nodes of each node. Furthermore, the model considers the balanced energy overhead in each communication path, adopts the energy balanced mechanism to compute the connection probability to the neighbor nodes. Meanwhile, the process of topology evolution is distributed and the communication radiuses of all sensor nodes are limited. A theoretical analysis exhibits that the model has power-law distribution of node degrees. Simulation shows that the proposed topology evolution model make energy overhead more balanced, and prolongs the lifetime of the network.

References

[1] J. Yick, B. Mukherjee, D. Ghosal (2008); Wireless sensor network survey, Computer Networks, 52(12): 2292-2330.
http://dx.doi.org/10.1016/j.comnet.2008.04.002

[2] A. Mainwaming, J. Polastre, R. Szewczyk, D. Culler, J. Anderson (2002); Wireless sensor networks for habitat monitoring, Proc. of ACM International Workshop on wireless serlsor Networks and Applications, 88-97.

[3] G. J. Pottie, W. J. Kaiser (2000); Wireless Integrated Network Sensors, Communication of the ACM, 43(5): 51-58.
http://dx.doi.org/10.1145/332833.332838

[4] C. Rotariu, H. Costin, I. Alexa, G. Andruseac, V. Manta, B. Mustata (2010); E-Health System for Medical Telesurveillance of Chronic Patients, International Journal of Computers Communications & Control, 5(5): 900-909.
http://dx.doi.org/10.15837/ijccc.2010.5.2253

[5] M. E. J. Newman, D. J. Watts (1999) Renormalization Group Analysis of the Small-World Network Model, Physics Letters A, 263(4): 341-346.
http://dx.doi.org/10.1016/S0375-9601(99)00757-4

[6] A. L. Barabasi, R. Albert (1999); Emergence of scaling in random networks, Science, 286(5439): 509-512.
http://dx.doi.org/10.1126/science.286.5439.509

[7] S. Lindsey. C. S. Raghavendra (2002); Pegasis: Power-Efficient gathering in sensor information systems, Proc of the IEEE Aerospace Conf, 18(4):305-314.

[8] H. Tan (2003); Power efficient data gathering and aggregation in wireless sensor networks, Acm Sigmod Record, 32(4): 66 - 71.
http://dx.doi.org/10.1145/959060.959072

[9] X. Y. Li, P. Wan, Y Wang, C. W. Yi (2003); Fault tolerant deployment and topology control in wireless networks, Proceedings of the Fourth Acm Symposium on Mobile Ad Hoc Networking and Computing, 117-128.

[10] T. Bernd, M. Heinrich (2005); Topology control for fault tolerant communication in highly dynamic wireless networks, Proceedings of the 3rd International Workshop on Intelligent Solutions in Embedded Systems, 89-100.

[11] A. Kashyap, S. Khuller, M Shayman (2006); Relay Placement for Higher Order Connectivity in Wireless Sensor Networks, Infocom IEEE International Conference on Computer Communications, 1-12.

[12] W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan (2000); Energy-efficient communication protocol for wireless microsensor networks, System Sciences Proceedings of Annual Hawaii International Conference on, DOI: 10.1109/HICSS.2000.926982.
http://dx.doi.org/10.1109/HICSS.2000.926982

[13] S. Bandyopadhyay, E. J. Coyle (2003); An energy efficient hierarchical clustering algorithm for wireless sensor networks, In Proc. of IEEE INFOCOM, 1713 - 1723.

[14] O. Younis, S. Member, S. Fahmy (2004); HEED: A Hybrid, Energy-Efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks, IEEE Trans. Mobile Computing, 366–379.
http://dx.doi.org/10.1109/TMC.2004.41

[15] L. J. Chen, M. Liu, D. X. Chen, L. Xie (2009); Topology evolution of wireless sensor networks among cluster heads by random walkers, Chinese journal of computers, 32(1): 69-76.

[16] H. Zhu, H. Luo, H. Peng, L. Li, Q. Luo (2009); Complex networks-based energy-efficient evolution model for wireless sensor networks, Chaos Solitons and Fractals the Interdisciplinary Journal of Nonlinear Science and Nonequilibrium and Complex Phenomenal, 41(4): 1828- 1835.

[17] X. Qi, S. Ma, G. Zheng (2011); Topology Evolution of Wireless Sensor Networks Basedon Adaptive Free-scale Networks, Journal of Information and Computational Science, 8(3): 467- 475.

[18] Y. Q. Wang, X. Y. Yang (2012); Study on a model of topology evolution of wireless sensor networks among cluster heads and its immunization, Acta Physica Sinica, 2012, 61(9): 1321- 1323.

[19] X. Luo, H. Yu, X. Wang. Energy-Aware Topology Evolution Model with Linkand Node Deletion in Wireless Sensor Networks, Mathematical Problems in Engineering, 55(1): 256- 267.

[20] A. Barabasi, R. Albert, H. Jeong (1999); Mean-field theory for scale-free random networks, Physica A Statistical Mechanics and Its Applications, 272: 173-187.

[21] S. Madden, M. J. Franklin, J. M. Hellerstein (2002); TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks, Proceedings of the Usenix Symposium on Operating Sysems Design & Implementation, 14-22.

[22] M. Hussaini, H. Bello-Salau, A. F. Salami, F. Anwar, A. H. Abdalla (2012); Enhanced clustering routing protocol for power-efficient gathering in wireless sensor network, International Journal of Communication Networks and Information Security, 18-28.
Published
2016-07-04
How to Cite
ZHANG, Changlun; LI, Chao; NING, Nan. A Forward-connection Topology Evolution Model in Wireless Sensor Networks. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 11, n. 4, p. 580-593, july 2016. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2544>. Date accessed: 22 sep. 2020. doi: https://doi.org/10.15837/ijccc.2016.4.2544.

Keywords

wireless sensor networks; topology evolution; energy balanced mechanism; power-law distribution