Fingerprints Identification using a Fuzzy Logic System

  • Ion Iancu Department of Informatics University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania
  • Nicolae Constantinescu Department of Informatics University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania
  • Mihaela Colhon Ion Iancu, Nicolae Constantinescu, Department of Informatics University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania

Abstract

This paper presents an optimized method to reduce the points number to be used in order to identify a person using fuzzy fingerprints. Two fingerprints are similar if n out of N points from the skin are identical. We discuss the criteria used for choosing these points. We also describe the properties of fuzzy logic and the classical methods applied on fingerprints. Our method compares two matching sets and selects the optimal set from these, using a fuzzy reasoning system. The advantage of our method with respect to the classical existing methods consists in a smaller number of calculations.

References

[1] L. Chmielewski and J. H. Hoepman, Fuzzy Private Matching (Extended Abstract), ARES '08: Proceedings of the 2008 Third International Conference on Availability, Reliability and Security, IEEE Computer Society, pp. 327–334, 2008.
http://dx.doi.org/10.1109/ARES.2008.170

[2] E. Czogola and J. Leski, On equivalence of approximate reasoning results using different interpretations of fuzzy if-then rules, Fuzzy Sets and Systems, vol. 117, no. 2, pp. 279–296, 2001.
http://dx.doi.org/10.1016/S0165-0114(98)00412-6

[3] M. Freedman, K. Nissim and B. Pinkas, Efficient private matching and set intersection, Advances in Cryptology, EUROCRYPT 2004, Springer-Verlag, pp. 1–19, 2004
http://dx.doi.org/10.1007/978-3-540-24676-3_1

[4] R. S. Germain, A. Califano and S. Colville, Fingerprint Matching Using Transformation Parameter Clustering, IEEE Comput. Sci. Eng., vol. 4, no. 4, pp. 42–49, 1997.
http://dx.doi.org/10.1109/99.641608

[5] M. R. Hawthorne, Fingerprints. Analysis and Understanding, CRC Press, 2009

[6] I. Iancu, T-norms with threshold, Fuzzy Sets and Systems. International Journal of Soft Computing and Intelligence, vol. 85, no. 1, pp. 83–92, 1997.

[7] I. Iancu, Operators with n-thresholds for uncertainty management, Journal of Applied Mathematics & Computing, Springer Berlin, vol. 19, no. 1-2, pp. 1–17, 2005.

[8] I. Iancu, Generalized Modus Ponens Using Fodor's Implication and T-norm Product with Threshold, International Journal of Computers, Communications & Control (IJCCC), vol. 4, no. 4, pp. 330–343, 2009.
http://dx.doi.org/10.15837/ijccc.2009.4.2452

[9] I. Iancu, Extended Mamdani Fuzzy Logic Controller, The Fourth IASTED International Conference on Computational Intelligence CI 2009, ACTA Press, vol. 5, pp. 143–149, 2009.

[10] F. Liu, H. Geng and Y. Q. Zhang, Interactive Fuzzy Interval Reasoning for Smart Web Shopping, Applied Soft Computing, Elsevier, vol. 5, no. 4, pp. 433–439, 2005.

[11] D. G. Radojevic, Fuzzy Set Theory in Boolean Frame, International Journal of Computers, Communications & Control (IJCCC), vol. 3, no. 5, pp. 121–131, 2008.

[12] V. V. T. Tong, H. Sibert, J. Lecoeur and M. Girault, Biometric fuzzy extractors made practical: a proposal based on Finger Codes, Advances in Biometrics, Springer Berlin / Heidelberg, pp. 604–613, 2009.

[13] T. Vesselenyi, S. Dzitac, I. Dzitac and M.J. Manolescu, Fuzzy and Neural Controllers for a Pneumatic Actuator, International Journal of Computers, Communications & Control (IJCCC), vol. 4, no. 2, pp. 375–387, 2007.
http://dx.doi.org/10.15837/ijccc.2007.4.2368

[14] L. A. Zadeh, A theory of approximate reasoning, Machine Intelligence 9, Elsevier, pp. 149–194, 1979.

[15] L. A. Zadeh, Fuzzy sets as a basis for a theory of a possibility, Fuzzy Sets and Systems, vol. 100, pp. 9–34, 1999.
http://dx.doi.org/10.1016/S0165-0114(99)80004-9
Published
2010-11-01
How to Cite
IANCU, Ion; CONSTANTINESCU, Nicolae; COLHON, Mihaela. Fingerprints Identification using a Fuzzy Logic System. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 5, n. 4, p. 525-531, nov. 2010. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2510>. Date accessed: 05 july 2020. doi: https://doi.org/10.15837/ijccc.2010.4.2510.

Keywords

fuzzy models, fingerprint authentication, cryptographic signature model