Coordinating Aerial Robots and Unattended Ground Sensors for Intelligent Surveillance Systems

Edison Pignaton de Freitas, Tales Heimfarth, Rodrigo Schmidt Allgayer, Flávio Rech Wagner, Tony Larsson, Carlos Eduardo Pereira, Armando Morado Ferreira

Abstract


Sensor networks are being used to implement different types of sophisticated emerging applications, such as those aimed at supporting ambient intelligence and surveillance systems. This usage is enhanced by employing sensors with different characteristics in terms of sensing, computing and mobility capabilities, working cooperatively in the network. However, the design and deployment of these heterogeneous systems present several issues that have to be handled in order to meet the user expectations. The main problems are related to the nodes‘ interoperability and the overall resource allocation, both inter and intra nodes. The first problem requires a common platform that abstracts the nodes’ heterogeneity and provides a smooth communication, while the second is handled by cooperation mechanisms supported by the platform. Moreover, as the nodes are supposed to be heterogeneous, a customizable platform is required to support both resource rich and poorer nodes. This paper analyses surveillance systems based on a heterogeneous sensor network, which is composed by lowend ground sensor nodes and autonomous aerial robots, i.e. Unmanned Aerial Vehicles (UAVs), carrying different kinds of sensors. The approach proposed in this work tackles the two above mentioned problems by using a customizable hardware platform and a middleware to support interoperability. Experimental results are also provided.

Keywords


Sensor Networks, Unmanned Vehicles Systems, Wireless Communication, Heterogeneous Platforms

Full Text:

PDF

References


D. A. Schoenwald. AUVs: In Space, Air, Water, and on the Ground. IEEE Control Systems Magazine, Vol. 20, No. 6, pp. 15-18, 2000.
http://dx.doi.org/10.1109/MCS.2000.887445

D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. IEEE Computer, Vol. 37, No. 8, pp. 41-49, 2004.
http://dx.doi.org/10.1109/MC.2004.93

E. P. Freitas, M. A. Wehrmeister, C. E. Pereira, and T. Larsson. Reflective middleware for heterogeneous sensor networks. Proceedings of 7th Workshop on Adaptive and Reflective Middleware, ACM, pp. 49-50, 2008.
http://dx.doi.org/10.1145/1462716.1462725

R. S. Allgayer, M. Götz, and C. E. Pereira. FemtoNode: Reconfigurable and Customizable Architecture forWireless Sensor Networks. Proceedings of 10th International Embedded Systems Symposium (IESS'09), Langenargen, Germany, pp. 302-309, 2009.

Sun Microsystems. SunSPOT, www.sunspotworld.com

A. T. Erman, L. Hoesel, and P. Havinga. Enabling Mobility in Heterogeneous Wireless Sensor Networks Cooperating with UAVs for Mission-Critical Management. IEEE Wireless Communications, Vol. 15, Issue 6, pp. 38-46, 2008.
http://dx.doi.org/10.1109/MWC.2008.4749746

M. A. Batalin, M. Hatting, and G. S. Sukhatme. Mobile Robot Navigation using a Sensor Network. IEEE Intl. Conf. on Robotics and Automation, 2004.
http://dx.doi.org/10.1109/robot.2004.1307220

J. S. Kinnebrew, A. Gupta, N. Shankaran, G. Biswas, and D. C. Schmidt. A Decision-Theoretic Planner with Dynamic Component Reconfiguration for Distributed Real-Time Applications. Proceedings of 8th International Symposium on Autonomous Decentralized Systems, pp. 461-472.
http://dx.doi.org/10.1109/isads.2007.1

Y. Jin, Y. Liao, A. A. Minai, and M. M. Polycarpou. Balancing Search and Target Response in Cooperative Unmanned Aerial Vehicle (UAV) Teams', IEEE Transactions on System, Man, Cybernetics- Part B: Cybernetics, vol. 36, No. 3, pp. 571-587, 2006.
http://dx.doi.org/10.1109/TSMCB.2005.861881

B. Walter, A. Sannier, D. Reinerss, and J. Oliver. UAV Swarm Control: Calculating Digital Pheromone Fields with the GPU. In The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), vol. 2005 (Conference Theme: One Team. One Fight. One Training Future), 2005.

MSB Co. web site. Submeter-scale aircraft, http://spyplanes.com

R. Leonard, and J. Drezner. Global Hawk and Darkstar. Santa Monica, California : RAND Corporation, vol. 4, 2002.

E. P. Freitas, M. A. Wehrmeister, C. E. Pereira, F. R. Wagner, E. T. Silva Jr., and F. C. Carvalho. DERAF: A High-Level Aspects Framework for Distributed Embedded Real-Time Systems Design. Springer, pp. 55-74, 2007.

E. P. Freitas, M. A. Wehrmeister, C. E. Pereira, and T. Larsson. Using Aspects and Component Concepts to Improve Reuse of Software for Embedded Systems Product Lines. Proceedings of 13th Early Aspects Workshop at SPLC-08, pp.105-112, 2008.

M. E. Bratman. Intention, Plans, and Practical Reason. Cambridge, MA, 1987.

Object Management Group (OMG). Distribution Service for Real-time Systems (DSS) Specification, Vol. 1.2, 2007.

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Santa Fe Institute Studies in the Sciences of Complexity, NY, 1999.

P. Gaudino, B. Schargel, E. Bonabeu, and B.T Clough. Swarm Intelligence: a New C2 paradigm with an Application to Control of Swarms of UAVs. Proceedings of 8th International Command and Control Research and Technology Symposium, 2003.

J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. A. Brueckner. Performance of Digital Pheromones for Swarming Vehicle Control, Proceedings of 4th International Joint Conference on Autonomous Agents and Multi-Agent Systems, ACM Press, pp. 903-910, 2005.
http://dx.doi.org/10.1145/1082473.1082610

T. Heimfarth, and P. Janacik. Experiments with Biologically-Inspired Methods for Service Assignment in Wireless Sensor Networks, IFIP Intl Federation for Information Processing, Vol. 268, Eds. Boston: Springer, pp. 71-84, 2008.

H. Hinkelmann, P. Zipf, and M. Glesner. A Domain-Specific Dynamically Reconfigurable Hardware Platform for Wireless Sensor Networks, Int. Conf. on Field-Programmable Technology, pp. 313-316, 2007.
http://dx.doi.org/10.1109/fpt.2007.4439274

P. Garcia et al. An overview of reconfigurable hardware in embedded systems, EURASIP J. Embedded Systems, New York, NY, USA, n.1, pp.13-13, 2006.

S. A. Ito, L. Carro, and R. P. Jacobi. Making Java Work for Microcontroller Applications, IEEE Design and Test of Computers, Los Alamitos, Vol. 18, No. 5, pp. 100-110, 2001.
http://dx.doi.org/10.1109/54.953277

Sashimi Manual, www.inf.ufrgs.br/˜lse/sashimi/, 2006.

M. A. Wehrmeister, C. E. Pereira, and L. B. Becker. Optimizing the generation of object-oriented real-time embedded applications based on the real-time specification for Java, Proceedings of The Design, Automation, and Test in Europe Conference, Belgium, pp. 806-811, 2006.
http://dx.doi.org/10.1109/date.2006.244147

J. Lessmann, T. Heimfarth, and P. Janacik. ShoX: An Easy to Use Simulation Platform forWireless Networks, Proceedings of 10th International Conference on Computer Modeling and Simulation, pp. 410-415, 2008.

E. P. Freitas, T. Heimfarth, M. A. Wehrmeister, F. R. Wagner, A. M. Ferreira, C. E. Pereira, and T. Larsson. Using Link Metric to Improve Communication Mechanisms and Real-time Properties in an Adaptive Middleware for Heterogeneous Sensor Networks, Advances in Information Security and Assurance, LNCS, 5576, Springer Berlin, Heidelberg, 422-431, 2009.

E. P. Freitas, T. Heimfarth, F. R. Wagner, A. M. Ferreira, C. E. Pereira, and T. Larsson. An Agent Framework to Support Sensor Networks - Setup and Adaptation, Proceedings of International Multiconference on Computer Science and Information Technology, pp. 533?540, Mragowo, Poland, 2009.
http://dx.doi.org/10.1109/imcsit.2009.5352774

E. P. Freitas, T. Heimfarth, F. R. Wagner, A. M. Ferreira, C. E. Pereira, and T. Larsson. Evaluation of Coordination Strategies for Heterogeneous Sensor Networks Aiming at Surveillance Applications, Proceedings of 8th IEEE Sensors, pp. 591?596, Christchurch, New Zealand, 2009.

C. Bettstetter. On the Minimum Node Degree and Connectivity of a Wireless Multihop Network, Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Computing, ACM, New York, NY, USA, 2002, pp. 80-91.
http://dx.doi.org/10.1145/513800.513811

E. P. Freitas, M. A. Wehrmeister, C. E. Pereira, and T. Larsson. Real-time Support in a Reflective Middleware for Heterogeneous Sensor Network. In Proceedings of the 29th IEEE Real-Time Systems Symposium: Work-in-Progress Proceedings, Barcelona, Spain, pp. 57-60, December 2008.




DOI: https://doi.org/10.15837/ijccc.2010.1.2464



Copyright (c) 2017 Edison Pignaton de Freitas, Tales Heimfarth, Rodrigo Schmidt Allgayer, Flávio Rech Wagner, Tony Larsson, Carlos Eduardo Pereira, Armando Morado Ferreira

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]


INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.

 

 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2); Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.