An Immuno-Genetic Hybrid Algorithm

Emad Nabil, Amr Badr, Ibrahim Farag

Abstract


The construction of artificial systems by drawing inspiration from natural systems is not a new idea. The Artificial Neural Network (ANN) and Genetic Algorithms (GAs) are good examples of successful applications of the biological metaphor to the solution of computational problems. The study of artificial immune systems is a relatively new field that tries to exploit the mechanisms of the natural immune system (NIS) in order to develop problem- solving techniques. In this research, we have combined the artificial immune system with the genetic algorithms in one hybrid algorithm. We proposed a modification to the clonal selection algorithm, which is inspired from the clonal selection principle and affinity maturation of the human immune responses, by hybridizing it with the crossover operator, which is imported from GAs to increase the exploration of the search space. We also introduced the adaptability of the mutation rates by applying a degrading function so that the mutation rates decrease with time where the affinity of the population increases, the hybrid algorithm used for evolving a fuzzy rule system to solve the wellknown Wisconsin Breast Cancer Diagnosis problem (WBCD). Our evolved system exhibits two important characteristics; first, it attains high classification performance, with the possibility of attributing a confidence measure to the output diagnosis; second, the system has a simple fuzzy rule system; therefore, it is human interpretable. The hybrid algorithm overcomes both the GAs and the AIS, so that it reached the classification ratio 97.36, by only one rule, in the earlier generations than the two other algorithms. The learning and memory acquisition of our algorithm was verified through its application to a binary character recognition problem. The hybrid algorithm overcomes also GAs and AIS and reached the convergence point before them.

Keywords


genetic algorithms, artificial immune system, fuzzy logic, breast cancer diagnosis, memory acquisition

Full Text:

PDF

References


A.P. Engelbrecht, Computational Intelligence: an Introduction, England, John Wiley & Sons; 2003.

C.A. Pena Reyes, M.A. Sipper, Evolving fuzzy rules for breast cancer diagnosis, Proc Nonlinear Theory and Applications, 2, pp 369-372, 1998.

C.A. Pena Reyes, M.A. Sipper, fuzzy-genetic approach to breast cancer diagnosis,Artificial Intelligence in Medicine; vol: 17, num:2, 131-155, 1999.

C.J. Merz, P.M. Murphy, UCI repository of machine learning database, http:/www.ics.uci.edu/M˜ learn/MLRepository.html, 1996.

D. Dasgupta , Artificial Immune systems and their applications, Springer-Verlag, inc., 1999.

D. Dasgupta, N. Attoh-Okine, Immunity-Based Systems, IEEE International Conference on Systems, Man, and Cybernetics, Orlando, Florida, pp 363-374, October 12-15,1997.

D.A. Coley, An introduction to genetic algorithms for scientists and engineers, world Scientific Publishing Co.,inc., 2001.

E. Gutuleac, Descriptive Timed Membrane Petri Nets for Modelling of Parallel Computing, International Journal of Computers, Communications & Control, Vol. I, No. S: Suppl. issue, pp. 256-261, 2006.

G. Ciobanu, A Programming Perspective of the Membrane Systems,International Journal of Computers, Communications & Control, Vol. I, No. S: Suppl. issue, pp.13-22, 2006.

H. Zhang, D. Liu, Fuzzy Modeling and Fuzzy Control, Birkhauser, 2006.

J. Rennard, Genetic Algorithm Viewer: Demonstration of a Genetic Algorithm, http://www.rennard.org/alife/english/gavgb.pdf, 2000.

J.J. Espinosa, J. Vandewalle, Constructing fuzzy models with linguistic Integrity, IEEE Transactions on Fuzzy Systems; vol. 7, no. 4, pp. 377-393, 1999.

L.N. De Castro, Fundamentals of natural computing: basic concepts, algorithms, and applications, CRC Press LLC; 2007.

L.N. De Castro, F.J. Zuben, Artificial Immune Systems: Part I – Basic Theory and Applications, EEC/Unicamp, Campinas, SP, Tech. Rep. – RT DCA 01/99, p. 95. 1999.

L.N. De Castro, F.J. Zuben, Learning and optimization using the clonal selection principle ,IEEE transactions on evolutionary computation , vol.:6, num.:3, pp 239-251, Jun, 2002.

L.N. De Castro, F.J. Zuben, The Clonal Selection Algorithm with Engineering Applications, Artificial Immune System Workshop, Genetic and Evolutionary Computation Conference, A. S. Wu (Ed.), pp. 36-37, 2000.

L.N. De Castro, J. Timmis, Artificial Immune Systems (A new computational Approach), Springer - Verlag, 2002.

L.N. De Castro, Natural computing,Information science and technology, Idea Group, Inc., 2005.

R. Setiono, Extracting rules from pruned neural networks for breast cancer diagnosis,Artificial Intelligence in Medicine, vol. 8, no. 1, pp. 37-51, Feb. 1996.
http://dx.doi.org/10.1016/0933-3657(95)00019-4

R.R. Yager, L.A. Zadeh, Fuzzy Sets, Neural Networks, and Soft Computing, New York, Van Nostrand Reinhold, 1994.

S. Forrest, S.A. Hofmeyrt, A. Somayajit, Architecture for an Artificial Immune System, Evolutionary Computing, vol. 8, no. 4, pp 443-473, 2000.
http://dx.doi.org/10.1162/106365600568257

T. Back, D. Fogel, Z. Mechalewicz, Glossary, Evolutionary Computation 1: Basic Algorithms and Operators, Institute of Physics Publishing, Bristol and Philadelphia, 2000.
http://dx.doi.org/10.1201/9781420034349

T. Back, The Interaction of Mutation Rate, Selection & Self-Adaptation within a Genetic Algorithm, In Proc. 2nd Int. Conf. on Parallel Problem Solving From Nature, North-Holland, Amsterdam, pp. 85-94, 1992.

W. M. Spears, Adapting Crossover in Genetic Algorithms, Artificial Intelligence Center Internal Report AIC-94-019, Naval Research Laboratory, Washington, DC 20375, 1994.




DOI: https://doi.org/10.15837/ijccc.2009.4.2454



Copyright (c) 2017 Emad Nabil, Amr Badr, Ibrahim Farag

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]


INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.

 

 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2);

SCImago Journal & Country Rank

Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.