# Fuzzy b-Metric Spaces

• Sorin Nădăban Department of Mathematics and Computer Science Aurel Vlaicu University of Arad, Elena Drăgoi 2, RO-310330 Arad, Romania

### Abstract

Metric spaces and their various generalizations occur frequently in computer science applications. This is the reason why, in this paper, we introduced and studied the concept of fuzzy b-metric space, generalizing, in this way, both the notion of fuzzy metric space introduced by I. Kramosil and J. Michálek and the concept of b-metric space. On the other hand, we introduced the concept of fuzzy quasi-bmetric space, extending the notion of fuzzy quasi metric space recently introduced by V. Gregori and S. Romaguera. Finally, a decomposition theorem for a fuzzy quasipseudo- b-metric into an ascending family of quasi-pseudo-b-metrics is established. The use of fuzzy b-metric spaces and fuzzy quasi-b-metric spaces in the study of denotational semantics and their applications in control theory will be an important next step.

### References

 Alghamdi, M.A., Hussain, N., Salimi, P. (2013); Fixed point and coupled fixed point theorems on b-metric-like spaces, Journal of Inequalities and Applications, 2013:402.

 Amini-Harandi, A. (2012). Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory and Applications, 2012:204.
http://dx.doi.org/10.1186/1687-1812-2012-204

 Bag, T. (2013); Fuzzy cone metric spaces and fixed point theorems of contractive mappings, Annals of Fuzzy Mathematics and Informatics, 6(3): 657–668.

 Bag, T. (2014); Some fixed point theorems in fuzzy cone b-metric spaces, International Journal of Fuzzy Mathematics and Systems, 4(2): 255–267.

 Bakhtin, I.A. (1989); The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30: 26–37.

 Boriceanu, M., Bota, M., Petruşel, A. (2010); Multivalued fractals in b-metric spaces, Central European Journal of Mathematics, 8(2): 367–377.
http://dx.doi.org/10.2478/s11533-010-0009-4

 Boriceanu, M., Petruşel, A., Rus, I.A. (2010); Fixed point theorems for some multivalued generalized contraction in b-metric spaces, International J. Math. Statistics, 6: 65–76.

 Boriceanu, M. (2009); Strict fixed point theorems for multivalued operators in b-metric spaces, Intern. J. Modern Math., 4: 285–301.

 Chifu, C., Petruşel, G. (2014); Fixed point for multivalued contraction in b-metric spaces with applications to fractals, Taiwanese Journal of Mathematics, 18(5): 1365–1375.

 Czerwik, S. (1993); Contraction mappings in b-metric space, Acta Math. Inf. Univ. Ostraviensis, 1: 5–11.

 Czerwik, S. (1998); Non-linear set-valued contraction mappings in b-metric spaces, Atti. Sem. Math. Fig. Univ. Modena, 46(2): 263–276.

 George, A., Veeramani, P. (1994); On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64: 395–399.
http://dx.doi.org/10.1016/0165-0114(94)90162-7

 Gregori, V., Romaguera, S. (2004); Fuzzy quasi-metric spaces, Applied General Topology, 5(1): 128–136.

 Hussain, N., Shah, M.H. (2011); KKM mappings in cone b-metric spaces, Comput. Math. Appl., 61(4): 1677–1684.

 Kaleva, O., Seikkala, S. (1984); On fuzzy metric spaces, Fuzzy Sets and Systems, 12: 215– 229.
http://dx.doi.org/10.1016/0165-0114(84)90069-1

 Kramosil, I., Michálek, J. (1975); Fuzzy metric and statistical metric spaces, Kybernetica, 11: 326–334.

 Matthews, S.G. (1994); Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., Vol. 728, The New York Academy of Sciences, 183–197.
http://dx.doi.org/10.1111/j.1749-6632.1994.tb44144.x

 Nădăban, S. (2015); Fuzzy euclidean normed spaces for data mining applications, International Journal of Computers Communications & Control, 10(1): 70–77.
http://dx.doi.org/10.15837/ijccc.2015.1.1564

 Schweizer, B., Sklar, A. (1960); Statistical metric spaces, Pacific J. Math., 10: 314–334.

 Shah, M.H., Hussain, N. (2012); Nonlinear contraction in partially ordered quasi b-metric spaces, Commun. Korean Math. Soc., 27(1): 117–128.
http://dx.doi.org/10.4134/CKMS.2012.27.1.117

 Shatanawi, W., Pitea, A., Lazović, R. (2014); Contraction conditions using comparison function on b-metric spaces, Fixed Point Theory and Applications, 2014:135.

 Singh, S.L., Prasad, B. (2008); Some coincidence theorems and stability of iterative procedures, Computers and Mathematics with Applications, 55: 2512–2520.
http://dx.doi.org/10.1016/j.camwa.2007.10.026

 Zadeh, L.A. (1965); Fuzzy Sets, Informations and Control, 8: 338–353.
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
Published
2016-01-26
How to Cite
NĂDĂBAN, Sorin. Fuzzy b-Metric Spaces. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 11, n. 2, p. 273-281, jan. 2016. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2443>. Date accessed: 02 july 2020. doi: https://doi.org/10.15837/ijccc.2016.2.2443.
Citation Formats
Section
Articles

### Keywords

Fuzzy b-metric spaces, fuzzy quasi-b-metric, fuzzy quasi-pseudo-bmetric, b-metric space