P Systems with Endosomes

  • Roberto Barbuti Università di Pisa Dipartimento di Informatica Largo Pontecorvo 3, 56127 Pisa, Italy
  • Giulio Caravagna Università di Pisa Dipartimento di Informatica Largo Pontecorvo 3, 56127 Pisa, Italy
  • Andrea Maggiolo-Schettini Università di Pisa Dipartimento di Informatica Largo Pontecorvo 3, 56127 Pisa, Italy
  • Paolo Milazzo Università di Pisa Dipartimento di Informatica Largo Pontecorvo 3, 56127 Pisa, Italy

Abstract

P Systems are computing devices inspired by the structure and the func- tioning of a living cell. A P System consists of a hierarchy of membranes, each of them containing a multiset of objects, a set of evolution rules, and possibly other membranes. Evolution rules are applied to the objects of the same membrane with maximal parallelism. In this paper we present an extension of P Systems, called P Systems with Endosomes (PE Systems), in which endosomes can be explicitly modeled. We show that PE Systems are universal even if only the simplest form of evolution rules is considered, and we give one application example.

References

[1] Aman, B., Ciobanu, G.: Membrane SystemsWith Surface Objects. Proceedings of the Int.Workshop on Computing with Biomolecules (CBM 2008), Vienna, 17–29, 2008.

[2] Aman, B., Ciobanu, G.: Mutual Mobile Membrane Systems With Objects on Surface. Proceedings of the Seventh Brainstorming Week on Membrane Computing (BWMC09), Seville, 2009.

[3] Barbuti, R., Maggiolo–Schettini, A., Milazzo, P. Tini, S.: P Systems with Transport and Diffusion Membrane Channels. Int. Workshop on Concurrency, Specification and Programming (CS&P'08), Gross Vaeter, Germany, September, 2008.

[4] Cardelli, L.: Brane calculi. Interactions of biological membranes. In: Danos, V., Schachter, V. (Eds.), LNCS 3082 (2005), pp. 257-280.

[5] Cardelli, L., Păun, G.: An universality result for a (mem)brane calculus based on mate/drip opera- tions. Internat. J. Found. Comput. Sci. 17(1), pp. 49–68.
http://dx.doi.org/10.1142/S0129054106003693

[6] Cavaliere, M., Seawards, S.: Membrane systems with peripheral proteins: transport and evolution. Proc. of the First Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2006), ENTCS 171 (2007), pp. 37–53.
http://dx.doi.org/10.1016/j.entcs.2007.05.006

[7] Danos, V. Pradalier, S.: Projective Brane Calculus. Proc. of the Fourth Conference on Computational Methods in Systems Biology (CMSB04), LNCS 3082 (2005), pp. 134–148.

[8] Freund, R., Oswald, M.: P systems with activated/prohibited membrane channels. Proc. of WMC 2002, LNCS 2597 (2003), pp. 261–269.

[9] Krishna, S.N.: Membrane computing with transport and embedded proteins. Theoretical Computer Science 410 (2009), pp. 355–375.
http://dx.doi.org/10.1016/j.tcs.2008.09.046

[10] Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61 (2000), pp. 108–143
http://dx.doi.org/10.1006/jcss.1999.1693

[11] Păun, G.: Membrane Computing. An Introduction. Springer (2002).
http://dx.doi.org/10.1007/978-3-642-56196-2

[12] Păun, G.: Membrane computing and brane calculi. Old, new, and future bridges. Theoretical Com- puter Science 404(1-2), pp. 19–25.
http://dx.doi.org/10.1016/j.tcs.2008.04.001

[13] Păun, A., Popa, B.: P Systems with Proteins on Membranes. Fundamenta Informaticae 72(4) (2006), pp. 467 – 483.

[14] P Systems, web page. http://ppage.psystems.eu/.
Published
2009-09-01
How to Cite
BARBUTI, Roberto et al. P Systems with Endosomes. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 4, n. 3, p. 214-223, sep. 2009. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2429>. Date accessed: 29 nov. 2020. doi: https://doi.org/10.15837/ijccc.2009.3.2429.

Keywords

P systems, PE Systems, Endosomes