Fuzzy Szpilrajn Theorem through Indicators

  • Irina Georgescu Academy of Economic Studies Department of Economic Cybernetics Piata Romana No 6, R 70167, Oficiul Postal 22 Bucharest, Romania

Abstract

In this paper there are studied some numerical indicators which measure the degree to which a fuzzy relation verifies some properties (reflexivity, transitivity, etc. ).The main result is a fuzzy generalization of the Szpilrajn theorem in terms of such numerical indicators and is applied to any fuzzy relation.

References

[1] R. Belohlávek, Fuzzy Relational Systems. Foundations and Principles, Kluwer, 2002.
http://dx.doi.org/10.1007/978-1-4615-0633-1

[2] U. Bodenhofer, Similarity–based Generalizations of Fuzzy Orderings Preserving the Classical Ax- ioms, International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, Vol. 3, pp. 593–610, 2000.
http://dx.doi.org/10.1142/S0218488500000411

[3] U. Bodenhofer, F. Klawonn, A Formal Study of Linearity Axioms for Fuzzy Orderings, Fuzzy Sets and Systems, Vol. 145, pp. 323–354, 2004.
http://dx.doi.org/10.1016/S0165-0114(03)00128-3

[4] S. Gottwald, Fuzzy Sets and Fuzzy Logic, Vieweg, Braunschweig, 1993.
http://dx.doi.org/10.1007/978-3-322-86812-1

[5] P. Hájek, Methamathematics of Fuzzy Logic, Kluwer, 1998.
http://dx.doi.org/10.1007/978-94-011-5300-3

[6] U. Höhle, N. Blanchard, Partial Ordering in L–undeterminate sets, Information Sciences, Vol. 35, pp. 135–144, 1985.
http://dx.doi.org/10.1016/0020-0255(85)90045-3

[7] E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer, 2000.
http://dx.doi.org/10.1007/978-94-015-9540-7

[8] M. Richter, Revealed Preference Theory, Econometrica, Vol. 34, pp. 635–645, 1966.
http://dx.doi.org/10.2307/1909773

[9] I. J. Rudas, J. Fodor, Information Aggregation in Intelligent Systems using Generalized Operators, International Journal of Computers, Communications and Control, Vol. 1, pp. 47–57, 2006.
http://dx.doi.org/10.15837/ijccc.2006.1.2272

[10] E. Szpilrajn, Sur l'Extension de l'Ordre Partiel, Fundamenta Mathematicae, Vol. 16, pp. 386–389, 1930.

[11] L. A. Zadeh, Similarity Relations and Fuzzy Orderings, Information Sciences, Vol. 3, pp. 177–200, 1971.
http://dx.doi.org/10.1016/S0020-0255(71)80005-1
Published
2008-12-01
How to Cite
GEORGESCU, Irina. Fuzzy Szpilrajn Theorem through Indicators. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 3, n. 4, p. 336-342, dec. 2008. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2401>. Date accessed: 08 july 2020. doi: https://doi.org/10.15837/ijccc.2008.4.2401.

Keywords

fuzzy relation, Szpilrajn theorem, similarity