Surface Roughness Image Analysis using Quasi-Fractal Characteristics and Fuzzy Clustering Methods

  • Tiberiu Vesselenyi University of Oradea Universitatii St. 1, 410087, Oradea, Romania
  • Ioan Dzitac Department of Economics Agora University of Oradea Piata Tineretului 8, Oradea 410526, Romania
  • Simona Dzitac University of Oradea Universitatii St. 1, 410087, Oradea, Romania
  • Victor Vaida University of Oradea Universitatii St. 1, 410087, Oradea, Romania SC Electrocentrale Deva SA Str. Santierului, nr.1, Mintia, Romania

Abstract

In this paper the authors describe the results of experiments for surface roughness image acquisition and processing in order to develop an automated roughness control system. This implies the finding of a characteristic roughness parameter (for example Ra) on the bases of information contained in the image of the surface. To achieve this goal we use quasi-fractal characteristics and fuzzy clustering methods.

References

[1] M. A. Costa - Fractal Description of Rough Surfaces for Haptic Display - PhD Thesis, Stanford University, 2000.

[2] Z. Jiang; H. Wang; B. Fei - Research into the application of fractal geometry in characterising machined surfaces, International Journal of Machine tools and Manufacture, Elsevier Science Ltd, 2001.

[3] R. K. Leach - NanoSurf IV: traceable measurement of surface texture at the National Physical Laboratory, International Journal of Machine tools and Manufacture, Elsevier Science Ltd, 2001.

[4] B. Y. Lee; Y. S. Tang- Surface roughness inspection by computer vision in turning operations, International Journal of Machine tools and Manufacture, Elsevier Science Ltd, 2001.

[5] D. M. Tsai; S. K. Wu; M.C. Chen- Optimal Gabor filter design for texture segmentation using stochastic optimization, Image and Vision Computing, Elsevier Science, 2000.

[6] S. Baleix, S. Le Roux, G. Bernhart, P. Luors- Surface and image analysis of oxides grown and spalled on heat resistant cast steels exposed on thermal cycles, Ecole des Mines d'Albi-Carmaux, Albi, France, Journal of Materials processing Technology, Elsevier Science BV, 2001.

[7] S. Brinkmann, H. Bodschwinna, H. W. Lemke - Accessing roughness in three-dimensions using Gaussian, regression filtering, University of Hanover, Germany, International Journal of Machine tools and Manufacture, Elsevier Science Ltd, 2001.

[8] S. Lu; Y. Gao; T. Xie; F. Xie; X.Q. Jiang; Z. Li; F. Wang - A novel contact/non-contact hybrid measurement system for surface topography characterization Huazhong, Hong Kong University of science and Technology, Second Research Institute of the Public Security Ministry, China, International Journal of Machine tools andManufacture, Elsevier Science Ltd, 2001.

[9] B. Josso, D. R. Burton, M. J. Lalor - Wavelet strategy for surface roughness analysis and characterisation, Liverpool Jhon Moores University, UK, Computer Methods in Applied Mechanics and Engineering, Elsevier Science, 2001.

[10] K. Yanagi, S. Hara, T. Endoh - Summit identification of anisotropic surface texture and directionality assessment based on asperity tip geometry, Nagaoke University of Technology, Tokyo Institute of Technology, Japan, International Journal of Machine tools and Manufacture, Elsevier Science Ltd, 2001.

[11] H. Zahouani, M. Assoul, R. Vargiolu, T. Mathia - The morphological tree transform of surface motifs. Incidence in tribology, Ecole Centrale de Lion, Universite France Comte, France, International Journal of Machine tools and Manufacture, Elsevier Science Ltd, 2001.

[12] M. Wieczorowski - Spiral sampling as a fast way of data acquisition in surface topography, International Journal of Machine tools and Manufacture, Elsevier Science Ltd, 2001.

[13] J. C. Bezdec - Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.

[14] C. Aguilera, M. Ramos, G. Roa - An Automatic Grading System for Panels Surfaces Using Artificial Vision, International Journal of Computers, Communications and Control, Vol. I (2006), No. 2, pp. 15-22, 2006.
Published
2008-09-01
How to Cite
VESSELENYI, Tiberiu et al. Surface Roughness Image Analysis using Quasi-Fractal Characteristics and Fuzzy Clustering Methods. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 3, n. 3, p. 304-316, sep. 2008. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2398>. Date accessed: 24 nov. 2020. doi: https://doi.org/10.15837/ijccc.2008.3.2398.

Keywords

image processing, surface roughness, quasi- fractal parameters, fuzzy clustering