A Neural Approach of Multimodel Representation of Complex Processes

  • Nesrine Elfelly 1Université des Sciences et Technologies de Lille (USTL), 2Ecole Polytechnique de lille, 3Ecole Centrale de Lille (EC Lille)
  • Jeans-Yves Dieulot Ecole Polytechnique de lille,
  • Pierre Borne Ecole Centrale de Lille (EC Lille) Laboratoire d’Automatique, Génie Informatique et Signal Ecole Centrale de Lille, Cité scientifique BP 48 59651 Villeneuve d’Ascq Cedex, France


The multimodel approach was recently developed to deal with the issues of complex processes modeling and control. Despite its success in different fields, it still faced with some design problems, and in particular the determination of the models and of the adequate method of validities computation. In this paper, we propose a neural approach to derive different models describing the process in different operating conditions. The implementation of this approach requires two main steps. The first step consists in exciting the system with a rich (e.g. pseudo random) signal and collecting measurements. These measurements are classified by using an adequate Kohonen self-organizing neural network. The second step is a parametric identification of the base-models by using the classification results for order and parameters estimation. The suggested approach is implemented and tested with two processes and compared to the classical modeling approach. The obtained results turn out to be satisfactory and show a good precision. These also allow to draw some interpretations about the adequate validities’ calculation method based on classification results.


[1] M. A. Al-Akhras, G. M. Aly, R. J. Green, Neural network learning approach of intelligent multimodel controller, IEE Proceedings on Control Theory and Applications, Vol. 143, pp. 395-400, 1996.

[2] I. S. Baruch, R. L. Beltran, J-L. Olivares, R. M. Garrido, A fuzzy-neural multi-model for mechanical systems identification and control, Mexican international conference on artificial intelligence N. 3, vol. 2972, pp. 774-783, 2004.

[3] I. S. Baruch, F. Thomas, J-M. Flores, E. Gortcheva, A multimodel recurrent neural network for systems identification and control, IEEE International Joint Conference on Neural Networks, vol. 2, pp. 1291-1296, 2001.

[4] R. Ben Abdennour, P. Borne, M. Ksouri, F. M'sahli, Identification et commande numérique des procédés industriels, Editions Technip, Paris, France, 2001.

[5] P. Borne, M. Benrejeb, J. Haggège, Les réseaux de neurones, Editions Technip, Paris, France, 2007.

[6] F. Delmotte, L. Dubois, P. Borne, A General Scheme for Multi-Model Controller using Trust, Mathematics and Computers in Simulation, Vol. 41, pp. 173-186, 1996.

[7] A. El Kamel, M. Ksouri-Lahmari, P. Borne, Contribution to Multimodel Analysis and Control, Studies in Informatics and Control, Vol. 9, pp. 29-38, 2000.

[8] T. A. Johansen, B. A. Foss, Editorial: Multiple model approaches to modelling and control, International Journal of Control, Vol. 72, pp. 575, 1999.

[9] Z. Kardous, A. El Kamel, N. Ben Hadj Braiek, P. Borne, On the quadratic stabilization in discrete multimodel control, IEEE Conference on Control Applications, Vol. 2, pp. 1398-1403, 2003.

[10] T. Kohonen, The self-organizing map, IEEE Proceedings, Vol. 78, pp. 1464 - 1480, 1990.

[11] M. Ksouri-Lahmari, P. Borne, M. Benrejeb, Multimodel: the construction of Model Bases, Studies in Informatics and Control, Vol. 3, pp. 199-210, 2004.

[12] D. J. Leith, W. E. Leithead, Analytic framework for blended multiple model systems using linear local models, International Journal of Control, Vol. 72, pp. 605-619, 1999.

[13] S. Mezghani, A. El Kamel, P. Borne, Multimodel control of discrete systems with uncertainties, International Journal of Studies in Informatics and Control, 2000.

[14] K. S. Narendra, J. Balakrishman, Adaptative control using multiple models, IEEE Transactions on Automatic Control, Vol. 42, pp. 171-187, 1997.

[15] J. C. Principe, L. Wang, M. A. Motter, Local dynamic modeling with self-organizing maps and application to nonlinear system identification and control, IEEE Proceedings, Vol. 86, pp. 2240- 2258, 1998.

[16] T. Raissi, A. El Kamel, W. Byrski, P. Borne, Multimodel analysis and control of multivariable systems, IEEE International Conference on Systems Man and Cybernetics, Vol. 1, pp. 640-645, 2001.

[17] M. Ronen, Y. Shabtai, H. Guterman, Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks, Biotechnology and Bioengineering, Vol. 77, N. 4, pp. 420-429, 2002.

[18] N. Sadati, A. Talasaz, Robust fuzzy multimodel control using variable structure system, IEEE Conference on Cybernetics and Intelligent Systems, Vol. 1, pp. 497-502, 2004.

[19] R. Schorten, R. Marry-Smith, R. Bjorgan, H. Gollee, On the interpretation of local models in blended multiple model structures, International Journal of Control, Vol. 72, pp. 620-628, 1999.

[20] R. R. Selmic, F. L. Lewis, Multimodel neural networks identification and failure detection of nonlinear systems, IEEE Conference on Decision and Control, Vol. 4, pp. 3128-3133, 2001.

[21] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modelling and control, IEEE Transactions on Systems Man and Cybernetics, Vol. 15, pp. 116-132, 1985.

[22] S. Talmoudi, R. Ben Abdennour, A. Kamel, P. Borne, A systematic determination approach of a models base for uncertain systems: Experimental validation, IEEE International Conference on Systems Man and Cybernetics, Vol. 6, pp. 73-81, 2002.
How to Cite
ELFELLY, Nesrine; DIEULOT, Jeans-Yves; BORNE, Pierre. A Neural Approach of Multimodel Representation of Complex Processes. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 3, n. 2, p. 149-160, jan. 2008. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2383>. Date accessed: 09 aug. 2020. doi: https://doi.org/10.15837/ijccc.2008.2.2383.


complex processes, modeling, multimodel approach, Kohonen map