Reactive Control Using Behavior Modelling of a Mobile Robot

Imen Ayari, Abderrazak Chatti

Abstract


This paper deals with the reactive control of an autonomous robot which should move safely in a crowded unknown environment to reach a goal. A behavior based approach is used to realize obstacle avoidance within a neural model conceived from a set of examples of perception/action relations; supervised learning is used for the aim; while goal-reaching task is realized using a fuzzy rule-based system. A task activation module is used to generate the overall command, resulting from the fuzzy controller and the neural model. Real time simulation examples of generated path with proposed techniques are presented.

Keywords


reactive control, mobile robots, neural networks, learning,fuzzy control

Full Text:

PDF

References


J.Miura, H.Uozumi and Y.Shirai, Mobile robot motion planning considering the motion uncertainty of moving obstacles, In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp.692-697, 1999.

H.Yu and T. Su, A destination driven navigator with dynamic obstacle motion prediction, In Proceedings of IEEE International Conference on Robotics and Automation, pp. 2692-2697, Seoul, Korea: IEEE, 2001.

M.Bennewitz, W.Burgard and S. Thrun, Adapting navigation strategies using motions patterns of people, In Proceedings of IEEE International Conference on Robotics and Automation, pp.2000- 2005, Taipei, Taiwan: IEEE, 2003.
http://dx.doi.org/10.1109/robot.2003.1241887

Dmitry V. Lebedev;1, Jochen J. Steil, Helge J. Ritter,The dynamic wave expansion neural network model for robot motion planning in time-varying environments, University of Bielefeld, Faculty of Technology, Neuroinformatics Group, 2005

R. C. Arkin, Towards Cosmopolitan Robots: Intelligent Navigation in Extended Man-made Environments, PhD Thesis, University of Massachusetts, Department of Computer and Information Science, 1987.

R. C. Arkin, Motor schema-based mobile robot navigation, Int. J. of Robotic Research, Vol 8, pp. 92-112, 1989.
http://dx.doi.org/10.1177/027836498900800406

R. C. Arkin and Tucker Balch, Principles and Practice in Review, Journal of Experimental and Theoretical Artificial Intelligence (JETAI), Vol. 9, No. 2/3, pp. 175-188, April, 1997
http://dx.doi.org/10.1080/095281397147068

R. A. Brooks, A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14-23; also MIT AI Memo 864, September 1985.

R. A. Brooks, A Robot that Walks; Emergent Behavior from a Carefully Evolved Network, Neural Computation, 1:2, pp. 253-262, 1989,. Also in IEEE International Conference on Robotics and Automation, Scottsdale, AZ, pp. 292-296, May 1989.

J. Rosenblatt, DAMN: A Distributed Architecture for Mobile Navigation, Ph.D. dissertation, Carnegie Mellon University Robotics Institute Technical Report CMU-RI-TR-97-01, Pittsburgh, PA, 1995.

J. Rosenblatt and D.W. Payton, A Fine-Grained Alternative to the Subsumption Architecture for Mobile Robot Control, Proceedings of the IEEE/INNS International Joint Conference on Neural Networks, Washington DC, Vol. 2, pp. 317-324, June 1989.
http://dx.doi.org/10.1109/IJCNN.1989.118717

D. Langer, J.K. Rosenblatt, and M. Hebert, A Behavior-Based System For Off-Road Navigation, IEEE Journal of Robotics and Automation, Vol. 10, No. 6, pp. 776-782, 1994.
http://dx.doi.org/10.1109/70.338532

Saffiotti, The uses of fuzzy logic for autonomous robot navigation: a catalogue raisonn'e, Soft Computing Research journal, Vol. 1, No. 4, pp. 180-197, 1997.

H. Seraji and A. Howard, Behavior-based robot navigation on challenging terrain: A fuzzy logic approach, IEEE Trans. Rob. Autom., Vol. 18, No. 3, pp. 308-321, 2002.
http://dx.doi.org/10.1109/TRA.2002.1019461

Simon X. Yang, Hao Li, Max Q.-H Meng, and Peter X Liu, An Embedded Fuzzy Controller for a Behavior-Based Mobile Robot with Guaranteed Performance, IEEE Transactions on Fuzzy Systems, Vol. 12, No. 4, pp.436-446,August 2004.
http://dx.doi.org/10.1109/TFUZZ.2004.832524

X. Yang, M. Moallem, and R. V. Patel, A Layered Goal-Oriented Fuzzy Motion Planning Strategy for Mobile Robot Navigation, IEEE transactions on systems, man, and cybernetics, Vol. 35, no. 6, 1214-1224, December 2005.
http://dx.doi.org/10.1109/TSMCB.2005.850177

Majura F. Selekwa, Damion D. Dunlap, and Emmanuel G. Collins, Jr., Implementation of Multivalued Fuzzy Behavior Control for Robot Navigation in Cluttered Environments, Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, pp.3699-3706, April 2005.

Fatmi, A. Al Yahmadi, L. Khriji, and N. Masmoudi, A Fuzzy Logic Based Navigation of a Mobile Robot, Transactions on engineering, computing and technology, Vol. 15, ISSN 1305-5313, 2006

D. Janglová, Neural Networks in Mobile Robot Motion, Inernational Journal of Advanced Robotic Systems, Vol.1 N.1, pp. 15-22,2004.
http://dx.doi.org/10.5772/5615

W. Filali, I. Ayari, A.Chatti, Modelling, Real time simulation and Fuzzy control of a differential wheels mobile robot, Congrès International en Sciences et Techniques de l'Automatique STA, Hammamet, 2006.

W. Filali, I. Ayari, A. Chatti, Research Platform on Mobile Robotics With Modular Architecture, Tunisian-Japanese seminar on Culture, Science and Technology TJCST, Sousse, 2005.

I. Rivals, L. Personnaz, G. Dreyfus and D. Canas, Real-time control of an autonomous vehicle: A neural network approach to the path following problem, In Neuro-Nimes, pp 219-229, Nimes, 1994.




DOI: https://doi.org/10.15837/ijccc.2007.3.2355



Copyright (c) 2017 Imen Ayari, Abderrazak Chatti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]


INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.

 

 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2);

SCImago Journal & Country Rank

Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.