Robust PID Decentralized Controller Design Using LMI

  • Danica Rosinová Slovak University of Technology Institute for Control and Industrial Informatics Ilkoviˇcova 3 81219 Bratislava , Slovakia
  • Vojtech Veselý Slovak University of Technology Institute for Control and Industrial Informatics Ilkoviˇcova 3 81219 Bratislava , Slovakia

Abstract

The new LMI based method for robust stability analysis for linear uncertain system with PID controller is proposed. The general constrained structure of controller matrix is considered appropriate for both output feedback and decentralized control and the respective guaranteed cost control design scheme is presented. The sufficient robust stability condition is developed for extended quadratic performance index including first derivative of the state vector to damp oscillations. The obtained stability condition is formulated for parameter-dependent Lyapunov function.

References

[1] Blondel, V. and J.N. Tsitsiklis (1997). NP-hardness of some linear control design problems. SIAM J. Control Optim., 35, pp.2118-2127.
http://dx.doi.org/10.1137/S0363012994272630

[2] Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan (1994). Linear matrix inequalities in system and control theory. SIAM Studies in Applied mathematics, Philadelphia.
http://dx.doi.org/10.1137/1.9781611970777

[3] Han, J. and R.E. Skelton (2003). An LMI optimization approach for structured linear controllers. In: Proc. 42nd IEEE CDC, Hawaii, USA, pp. 5143-5148.

[4] Henrion, D., D. Arzelier and D. Peaucelle (2002). Positive polynomial matrices and improved LMI robustness conditions. In: 15th IFAC World Congress, Barcelona, Spain.

[5] deOliveira, M.C., J. Bernussou and J.C. Geromel (1999). A new discrete-time robust stability condition. Systems and Control Letters, 37, pp. 261-265.
http://dx.doi.org/10.1016/S0167-6911(99)00035-3

[6] deOliveira, M.C., J.F. Camino and R.E. Skelton (2000). A convexifying algorithm for the design of structured linear controllers. In: Proc. 39nd IEEE CDC, Sydney, Australia, pp. 2781-2786.

[7] Ge, Ming, Min-Sen Chiu, Qing-GuoWang (2002). Robust PID controller design via LMI approach. Journal of Process Control, 12, pp.3-13.
http://dx.doi.org/10.1016/S0959-1524(00)00057-3

[8] Gyurkovics, E., Takacs, T. (2000): Stabilisation of discrete-time interconnected systems under control constraints. IEE Proceedings - Control Theory and Applications, 147, No. 2, 137-144
http://dx.doi.org/10.1049/ip-cta:20000142

[9] Peaucelle, D., D. Arzelier, O. Bachelier and J. Bernussou (2000). A new robustD-stability condition for real convex polytopic uncertainty. Systems and Control Letters, 40, pp. 21-30.
http://dx.doi.org/10.1016/S0167-6911(99)00119-X

[10] Rosinová, D., V. Veselý and V. Kuˇcera (2003). A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems. Kybernetika, 39, pp. 447-459.

[11] Rosinová, D. and V. Veselý (2003). Robust output feedback design of discrete-time systems – linear matrix inequality methods. In: 2th IFAC Conf. CSD'03 (CD-ROM), Bratislava, Slovakia.

[12] Skelton, R.E., T. Iwasaki and K. Grigoriadis (1998). A Unified Algebraic Approach to Linear Control Design, Taylor and Francis.

[13] Veselý, V. (2003). Robust output feedback synthesis: LMI Approach. In: 2th IFAC Conference CSD'03 (CD-ROM), Bratislava, Slovakia.

[14] Zheng Feng, Qing-Guo Wang, Tong Heng Lee (2002). On the design of multivariable PID controllers via LMI approach. Automatica, 38, pp.517-526.
http://dx.doi.org/10.1016/S0005-1098(01)00237-0
Published
2007-04-01
How to Cite
ROSINOVÁ, Danica; VESELÝ, Vojtech. Robust PID Decentralized Controller Design Using LMI. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 2, n. 2, p. 195-204, apr. 2007. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2352>. Date accessed: 28 nov. 2020. doi: https://doi.org/10.15837/ijccc.2007.2.2352.

Keywords

Uncertain systems, Robust stability, Decentralized control, Linear matrix inequalities (LMI), Lyapunov function