Formation Control of Mobile Robots

  • Dang Binh Nguyen Thai Nguyen University of Technology Rector’s Office 3-2 Street, Thai Nguyen City, Vietnam
  • Khac Duc Do School of Mechanical Engineering The University of Western Australia 35 Stirling Highway, Crawley, WA 6009, Australia


A constructive method is presented to design cooperative controllers that force a group of N mobile robots to achieve a particular formation in terms of shape and orientation while avoiding collisions between themselves. The control development is based on new local potential functions, which attain the minimum value when the desired formation is achieved, and are equal to infinity when a collision occurs. The proposed controller development is also extended to formation control of nonholonomic mobile robots.


[1] P. K. C.Wang, Navigation Strategies for Multiple Autonomous Mobile Robots Moving in Formation, J. Robot. Syst., Vol. 8, No. 2, pp. 177-195, 1991.

[2] P. K. C. Wang and F. Y. Hadaegh, Coordination and Control of Multiple Microspacecraft Moving in Formation, J. Astronautical Sci., Vol. 44, No. 3, pp. 315-355, 1996.

[3] J. P. Desai, J. Ostrowski, and V. Kumar, Controlling Formations of Multiple Mobile Robots, Proc. IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, pp. 2864-2869, 1998.

[4] M. Mesbahi and F. Y. Hadaegh, Formation Flying Control of Multiple Spacecraft via Graphs, Matrix Inequalities, and Switching, AIAA J. Guidance, Control, Dynam., Vol. 24, no. 2, pp. 369-377, 2000.

[5] R. T. Jonathan, R. W. Beard and B. J. Young, A Decentralized Approach to Formation Maneuvers, IEEE Trans. Robot. and Automat., Vol. 19, pp. 933-941, 2003.

[6] T. D. Barfoot and C. M. Clark, Motion Planning for Formations of Mobile Robots, Robot. Auton. Syst., vol. 46, pp. 65-78, 2004.

[7] H. Yamaguchi, Adaptive Formation Control for Distributed Autonomous Mobile Robot Groups, Proc. IEEE Int. Conf. Robotics and Automation, Albuquerque, NM, pp. 2300-2305, 1997.

[8] T. Balch and R. C. Arkin, Behavior-Based Formation Control for Multirobot Teams, IEEE Trans. Robot. Automat., Vol. 14, pp. 926-939, 1998.

[9] M. Schneider-Fontan and M. J. Mataric, Territorial Multirobot Task Division, IEEE Trans. Robot. Automat., Vol. 14, pp. 815-822, 1998.

[10] Q. Chen and J. Y. S. Luh, Coordination and Control of a Group of Small Mobile Robots, Proc. IEEE Int. Conf. Robotics and Automation, pp. 2315-2320, 1994.

[11] M. Veloso, P. Stone, and K. Han, The CMUnited-97 Robotic Soccer Team: Perception and Multiagent Control, Robot. Auton. Syst., Vol. 29, pp. 133-143, 1999.

[12] L. E. Parker, ALLIANCE: An Architecture for Fault-tolerant Multirobot Cooperation, IEEE Trans. Robot. Automat., Vol. 14, pp. 220-240, 1998.

[13] K. Sugihara and I. Suzuki, Distributed Algorithms for Formation of Geometric Patterns with Many Mobile Robots, J. Robot. Syst., Vol. 13, no. 3, pp. 127-139, 1996.<127::AID-ROB1>3.0.CO;2-U

[14] N. E. Leonard and E. Fiorelli, Virtual Leaders, Artificial Potentials and Coordinated Control of Groups, Proc. IEEE Conf. Decision and Control, Orlando, FL, pp. 2968-2973, 2001.

[15] W. Kang, N. Xi, and A. Sparks, Formation Control of Autonomous Agents in 3DWorkspace, Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, CA, pp. 1755-1760, 2000.

[16] M. A. Lewis and K.-H. Tan, High Precision Formation Control of Mobile Robots Using Virtual Structures, Auton. Robots, Vol. 4, pp. 387-403, 1997.

[17] W. Kang and H.-H. Yeh, Coordinated Attitude Control of Multisatellite Systems, Int. J. Robust Nonlinear Control, Vol.12, pp. 185-205, 2002.

[18] R. W. Beard, J. Lawton, and F. Y. Hadaegh, A Coordination Architecture for Formation Control, IEEE Trans. Control Syst. Technol., Vol. 9, pp. 777-790, 2002.

[19] R. Skjetne, S. Moi and T. I. Fossen, Nonlinear Formation Control of Marine Craft, Proc. IEEE Conf. on Decision and Control, Las Vegas, NV, pp. 1699-1704, 2002.

[20] P. Ogren, M. Egerstedt and X. Hu, A Control Lyapunov Function Approach to Multiagent Coordination, IEEE Trans. Robot. Autom. Vol.18, pp. 847-851.

[21] W. Ren and R. W. Beard, Formation Feedback Control for Multiple Spacecraft via Virtual Structures. IEE Proceedings-Control Theory Application, Vol. 151, pp. 357-368, 2004.

[22] E. W. Jush and P. S. Krishnaprasad, Equilibria and Steering Laws for Planar Formations, Syst. Contr. Letters, Vol. 52, pp. 25-38, 2004.

[23] D. M. Stipanovica, G. Inalhana, R. Teo and C. J. Tomlina, Decentralized overlapping control of a formation of unmanned aerial vehicles, Automatica, vol. 40, pp. 1285-1296, 2004.

[24] S. S. Ge and Y. J. Cui, New Potential Functions for Mobile Robot Path Planning, IEEE Trans. Robot. Automat., Vol. 16, pp. 615-620, 2000.

[25] S. S. Ge and Y. J. Cui, Dynamics Motion Planning for Mobile Robots using Potential Field Method, Auton. Robots, Vol. 13, pp. 207-222, 2000.

[26] E. Rimon and D.E. Koditschek, Exact Robot Navigation Using Artificial Potential Functions, IEEE Trans. Robot. and Automat., Vol. 8, no. 5, pp. 501-518, 1992.

[27] E. Rimon and D.E. Koditschek, Robot Navigation Functions on Manifolds with Boundary, Advances in Applied Mathematics, Vol. 11, pp. 412-442, 1990.

[28] H. G. Tanner, S. G. Loizou and K. J. Kyriakopoulos, Nonholonomic Navigation and Control of Multiple Mobile Robot Manipulators, IEEE Trans. Robot. Automat., Vol. 19, no. 1, pp. 53-64, 2003.

[29] H.G. Tanner and A. Kumar, Towards Decentralization of Multi-robot Navigation Functions, IEEE Int. Conf. Robotics and Automation, Barcelona, Spain, pp 4143-4148, 2005.

[30] W. E. Dixon, D. M. Dawson, E. Zergeroglu and A. Behal, Nonlinear Control of Wheeled Mobile Robots, Springer, London, 2001.

[31] K. D. Do, Z. P. Jiang and J. Pan, A Global Output-feedback Controller for Simultaneous Tracking and Stabilization of Mobile Robots, IEEE Trans. Robot. Automat., Vol.20, pp. 589-584, 2004.

[32] T. Fukao, H. Nakagawa, and N. Adachi, Adaptive tracking control of nonholonomic mobile robot, IEEE Trans. Robot. Automat., Vol. 16, pp. 609-615, 2000.

[33] H. G. Tanner, A. Jadbabaie and G. J. Pappas, Stable Flocking of Mobile Agents, Part I: Fixed Topology, Proc. IEEE Conf. Decision and Control, Hawaii, pp. 2010-2015, 2003.

[34] G. Godsils and G. Royle, Algebraic Graph Theory, New York: Springer Graduate Texts in Mathematics, 207, 2001.

[35] M. Krstic, I. Kanellakopoulos and P.V. Kokotovic, Nonlinear and Adaptive Control Design, New York: Wiley, 1995.

[36] H. Khalil, Nonlinear Systems, Prentice Hall, 2002.

[37] K. D. Do and J. Pan, Global Path-tracking of Underactuated Ships with Non-zero Off-diagonal Terms, Automatica, Vol. 41, pp. 87-95, 2005.
How to Cite
NGUYEN, Dang Binh; DO, Khac Duc. Formation Control of Mobile Robots. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 1, n. 3, p. 41-59, july 2006. ISSN 1841-9844. Available at: <>. Date accessed: 13 aug. 2020. doi:


Formation control, mobile robot, local potential function, nonholonomic mobile robot