Meta-Rationality in Normal Form Games

  • Dan Dumitru Dumitrescu “Babes Bolyai” University Romania, Cluj-Napoca, St. Universitatii 5,
  • Rodica Ioana Lung “Babes Bolyai” University Romania, Cluj-Napoca, St. Universitatii 5,
  • Tudor Dan Mihoc Dan Dumitru Dumitrescu, Rodica Ioana Lung, “Babes Bolyai” University Romania, Cluj-Napoca, St. Universitatii 5,


A new generative relation for Nash equilibrium is proposed. Different types of equilibria are considered in order to incorporate players different rationality types for finite non cooperative generalized games with perfect information. Proposed equilibria are characterized by use of several generative relations with respect to players rationality. An evolutionary technique for detecting approximations for equilibria is used. Numerical experiments show the potential of the method.


[1] Bade, S., Haeringer, G., Renou, L.: More strategies, more Nash equilibria, Working Paper 2004-15, School of Economics University of Adelaide University, 2004.

[2] Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo, and Hans-Paul Schwefel, editors, Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, France, 2000. Springer, Lecture Notes in Computer Science, 1917, 849-858.

[3] Deb, K.: Multi-objective optimization using evolutionary algorithms, Wiley, 2001.

[4] Dumitrescu, D., Lung, R.I., Mihoc, T.D.: Evolutionary Equilibria Detection in Noncooperative Games, Book Series: LNCS, Publisher Springer Berlin / Heidelberg, Volume 5484 / 2009, Book: Applications of Evolutionary Computing, 2009, 253-262.

[5] Lung, R. I., Muresan, A. S., and Filip, D. A.: Solving multi-objective optimization problems by means of natural computing with application in finance, In Aplimat 2006 (Bratislava, February 2006), pp. 445-452.

[6] Lung, R., I., Dumitrescu, D.: Computing Nash Equilibria by Means of Evolutionary Computation, Int. J. of Computers, Communications & Control, 2008, 364-368

[7] Maskin, E. : The theory of implementation in Nash equilibrium:A survey, in: L. Hurwicz, D. Schmeidler and H. Sonnenschein, eds., Social Goals and Social Organization (Cambridge University Press), 1985,173-204

[8] McKelvey, R., D., McLennan, A.: Computation of equilibria in finite games, In H. M. Amman, D. A. Kendrick, and J. Rust, editors, Handbook of Computational Economics, Elsevier,1996.

[9] Nash.,J.,F.: Non-cooperative games, Annals of Mathematics, 54:286-295, 1951.

[10] Osborne, M. J., Rubinstein, A.: A Course in Game Theory, MIT Press, Cambridge, MA, 1994
How to Cite
DUMITRESCU, Dan Dumitru; LUNG, Rodica Ioana; MIHOC, Tudor Dan. Meta-Rationality in Normal Form Games. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 5, n. 5, p. 693-700, dec. 2010. ISSN 1841-9844. Available at: <>. Date accessed: 30 nov. 2021.


non-cooperative games, evolutionary equilibrium detection, generative relations, Nash-Pareto, meta-strategy