Tense θ-valued Moisil propositional logic

  • Carmen Chiriţă University of Bucharest Faculty of Mathematics and Computer Science Romania, 010014 Bucharest, 4 Academiei


In this paper we study the tense θ-valued Moisil propositional calculus, a logical system obtained from the θ-valued Moisil propositional logic by adding two tense operators. The main result is a completeness theorem for tense θ-valued Moisil propositional logic. The proof of this theorem is based on the representation theorem of tense θ-valued Łukasiewicz-Moisil algebras, developed in a previous paper.


[1] V. Boicescu, Sur les syst emes déductifs dans la logique θ-valente, Publ. D ep. Math. Lyon, 8, 123-133, 1971.

[2] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, Łukasiewicz-Moisil algebras, North- Holland, 1991.

[3] V. Boicescu, Contributions to the study of Łukasiewicz-Moisil algebras (Romanian), Ph.D. Thesis, University of Bucharest, 1984.

[4] V. Boicescu, Sur une logique polyvalente, Rev. Roumaine Sci. Soc., s er. Philos. et Logique, 17, 393-405, 1973b.

[5] J. P. Burgess. Basic tense logic. In: Dov Gabbay and F. Guenthner, Eds., Handbook of philosophical logic, chapter II.2, Reidel, 89-134, 1984.

[6] R. Cignoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer, 2000.

[7] C. Chiriţă, Tense θ-valued Łukasiewicz -Moisil algebras, to appear in Journal of Multiple- Valued Logic and Soft Computing.

[8] D. Diaconescu, G. Georgescu, Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fundamenta Informaticae XX: 1-30, 2007.

[9] I. Dziţac, L. Andrei, 65 Years from Birth of Prof. Gheorghe S. Nadiu (1941-1998), International Journal of Computers, Communications & Control Vol. I, No. 3, pp. 93-98, 2006.

[10] A. Filipoiu, θ-valued Łukasiewicz-Moisil algebras and logics (Romanian), Ph.D.Thesis, University of Bucharest, 1981.

[11] G. Georgescu, A. Iorgulescu, S. Rudeanu, Grigore C. Moisil (1906-1973) and his School in Algebraic Logic, Int. Journal of Computers, Communications & Control, Vol. I, No. 1, pp. 81-99, 2006.

[12] G. Georgescu, A. Iorgulescu, S. Rudeanu, Some Romanian researches in algebra of logic, In: Grigore C.Moisil and his followers, Editura Academiei Romane, 86-120, 2007.

[13] G. Georgescu, A. Iorgulescu, I. Leuştean, Monadic and closure MV-algebras, Multiple- Valued Logic, 3, 235-257, 1998.

[14] R. Goldblatt, Logics of Time and Computation, CSLI Lecture Notes No. 7, 1992.

[15] P. H ajek, Metamathematics of fuzzy logic, Kluwer Acad.Publ., Dordrecht, 1998

[16] A. Iorgulescu, 1 + θ -valued Łukasiewicz-Moisil algebras with negation (Romanian). Ph.D. Thesis, University of Bucharest, 1984.

[17] J. Łukasiewicz, On three-valued logic, Ruch Filozoficzny (Polish), 5, 60-171, 1920.

[18] Gr. C. Moisil, Recherches sur les logiques non-chrysippiennes, Ann. Sci. Univ. Jassy, 26, 431-466, 1940.

[19] Gr. C. Moisil, Notes sur les logiques non-chrysippiennes, Ann. Sci. Univ. Jassy, 27, 86-98, 1941.

[20] Gr. C. Moisil, Logique modale, Disquis. Math. Phys, 2, 1942.

[21] Gr. C. Moisil, Łukasiewiczian algebras, Computing Center, University of Bucharest (preprint), 311-324, 1968.

[22] Gr. C. Moisil, Essais sur les logiques non-chrysippiennes, Ed. Academiei, Bucharest, 1972.

[23] Gh. S. Nadiu, Cercetări asupra logicilor necryssipiene/Research about Necryssipiene Logics, 1972 (PhD Thesis, supervisor Grigore C. Moisil).

[24] H. Rasiowa, An algebraic approach to non-classical logics, North-Holland Publ., Amsterdam, Polish Scientific Publ., Warszawa, 1974.
How to Cite
CHIRIŢĂ, Carmen. Tense θ-valued Moisil propositional logic. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 5, n. 5, p. 642-653, dec. 2010. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2220>. Date accessed: 30 nov. 2021.


Łukasiewicz-Moisil algebras, tense Moisil logic.