An Automatic Face Detection System for RGB Images

  • Tudor Barbu Institute of Computer Science, Romanian Academy, Iaşi branch, Iaşi, Romania E-mail: , www.iit.tuiasi.ro/tudbar

Abstract

We propose a robust face detection approach that works for digital color images. Our automatic detection method is based on image skin regions, therefore a skin-based segmentation of RGB images is provided first. Then, we decide for each skin region if it represents a human face or not, using a set of candidate criteria, an edge detection process, a correlation based technique and a threshold-based method. A high face detection rate is obtained using the proposed method.

References

[1] C. Papageorgiou, M. Oren, T. Poggio. A General Framework for Object Detection, International Conference on Computer Vision, Bombay, India, pp. 555-562, Jan. 1998.
http://dx.doi.org/10.1109/iccv.1998.710772

[2] M.H. Yang, D. Kriegman, N. Ahuja. Detecting Faces in Images: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol. 24, no. 1, pp. 34-58, Jan. 2002.
http://dx.doi.org/10.1109/34.982883

[3] S. Atsushi, I. Hitoshi, S. Tetsuaki, H. Toshinori. Advances in face detection and recognition technologies, NEC Journal of Advanced Technology, Vol. 2, no. 1, pp. 28-34, 2005.

[4] T. Barbu. Eigenimage-based face recognition approach using gradient covariance, Numerical Functional Analysis and Optimization, Volume 28, pp. 591 . 601, Issue 5 & 6, May 2007.

[5] G. Yang, T.S. Huang. Human face detection in a complex background. Pattern Recognition, Vol. 27, no. 1, pp. 53-63, 1994.
http://dx.doi.org/10.1016/0031-3203(94)90017-5

[6] T.K. Leung, M.C. Burl, P. Perona. Finding Faces in Cluttered Scenes Using Random Labeled Graph Matching, Proceedings of the 5th International Conference on Computer Vision, pp. 637-644, Cambridge, Mass., June 1995.
http://dx.doi.org/10.1109/ICCV.1995.466878

[7] K.C. Yow, R. Cipolla. A probabilistic framework for perceptual grouping of features for human face detection, Second IEEE International Conference on Automatic Face and Gesture Recognition (FG '96), pp. 16, 1996.

[8] H.A. Rowley, S. Baluja, T. Kanade. Neural Network-Based Face Detection, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 203-208, 1996.
http://dx.doi.org/10.1109/cvpr.1996.517075

[9] A.V. Nefian. An embedded HMM-based approach for face detection and recognition, Proceedings of the Acoustics, Speech, and Signal Processing �e99 on 1999 IEEE International Conference, Vol. 6, pp. 3553-3556, 1999.
http://dx.doi.org/10.1109/icassp.1999.757610

[10] T.V. Pham, M. Worring, A.W.M. Smeulders. Face Detection by Aggregated Bayesian Network Classifiers, Machine Learning and Data Mining in Pattern Recognition, Book Series Lecture Notes in Computer Science, Volume 2123, pp. 249-262, 2001.
http://dx.doi.org/10.1007/3-540-44596-x_21

[11] E. Osuna, R. Freund, F. Girosi. An improved training algorithm for support vector machines, In Proceedings of IEEE NNSP'97, pp. 276-285, Amelia Island, Florida, 1997 (a).
http://dx.doi.org/10.1109/nnsp.1997.622408

[12] M. Nilsson, J. Nordberg, I. Claesson. Face Detection using Local SMQT Features and Split Up SNoW Classifier, IEEE International Conference on Acoustics, Speech, and Signal Processing
http://dx.doi.org/10.1109/icassp.2007.366304

[13] K. Ichikawa, T. Mita, O. Hori. Component-based robust face detection using AdaBoost and decision tree, Proc. of the 7th Int. Conference on Automatic Face and Gesture Recognition, pp. 413-420, 2006.
http://dx.doi.org/10.1109/FGR.2006.33

[14] Z. Jin, Z. Lou, J. Yang, Q. Sun. Face detection using template matching and skin-color information, Advanced Neurocomputing Theory and Methodology, Vol. 70, Issues 4-6, pp. 794-800, Jan. 2007.
http://dx.doi.org/10.1016/j.neucom.2006.10.043

[15] S. Majed, H. Arof. Pattern correlation approach towards face detection system framework, Information Technology, 2008. ITSim 2008. International Symposium on, Vol. 4, pp. 1-5, Aug. 2008.

[16] D. A. Forsyth, M. M. Fleck. Identifying nude pictures, IEEE Workshop on the Applications of Computer Vision '96, pp. 103-108, 1996.
http://dx.doi.org/10.1109/ACV.1996.572010

[17] V. Vezhnevets, V. Sazonov, A. Andreeva. A Survey on Pixel-Based Skin Color Detection Techniques, In Proceedings of the GraphiCon 2003, pp. 85-92, 2003.

[18] L.G. Shapiro, G. C. Stockman. Computer Vision, pp. 137- 150, Prentince Hall, 2001.

[19] H.J.A.M. Heijmans. Morphological Image Operators, Advances in Electronics and Electron Physics, Boston: Academic Press, 1994.

[20] J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 88, pp. 679-714, 1986.
http://dx.doi.org/10.1109/TPAMI.1986.4767851

[21] A.L. Edwards, An Introduction to Linear Regression and Correlation, San Francisco, CA: W.H. Freeman, pp. 33-46, 1976.
Published
2011-03-01
How to Cite
BARBU, Tudor. An Automatic Face Detection System for RGB Images. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 6, n. 1, p. 21-32, mar. 2011. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2197>. Date accessed: 13 july 2020. doi: https://doi.org/10.15837/ijccc.2011.1.2197.

Keywords

color image, color space, RGB, HSV, skin region, face detection, cross-correlation coefficient, edge detection, template matching, threshold.