An Approach to Fuzzy Modeling of Electromagnetic Actuated Clutch Systems
Keywords:
Discrete-time Takagi-Sugeno fuzzy models, electromagnetic actuated clutch system, linearization, operating points, simulation resultsAbstract
This paper proposes an approach to fuzzy modeling of a nonlinear servo system application represented by an electromagnetic actuated clutch system. The nonlinear model of the process is simplified and linearized around several operating points of the input-output static map of the process. Discrete-time Takagi-Sugeno (T-S) fuzzy models of the processes are derived on the basis of the modal equivalence principle; the rule consequents of these T-S fuzzy models contain the state-space models of the process. Three discrete-time T-S fuzzy models are suggested and compared. The simulation results validate the new fuzzy models of the electromagnetic actuated clutch system.
References
Å krjanc, I.; BlažiÄ, S.; Agamennoni O. (2005); Identification of dynamical systems with a robust interval fuzzy model, Automatica, 41(2):327-332.
Identification of dynamical systems with a robust interval fuzzy model, Automatica, 41(2):327-332. http://dx.doi.org/10.1016/j.automatica.2004.09.010
Johanyák, Z.C. (2010); Survey on five fuzzy inference-based student evaluation methods, in: Computational Intelligence in Engineering, I. J. Rudas, J. Fodor, J. Kacprzyk, Eds., Studies in Computational Intelligence, Springer-Verlag, Berlin, Heidelberg, 313:219-228. http://dx.doi.org/10.1007/978-3-642-15220-7_18
VašÄˇak, J.; Madarász, L. (2010); Adaptation of fuzzy cognitive maps-a comparison study, Acta Polytechnica Hungarica, 7(3):109-122.
Babu Devasenapati, S.; Ramachandran, K. I. (2011) Hybrid fuzzy model based expert system for misfire detection in automobile engines, Int. J. of Artificial Intelligence, 7(A11):47-62.
Dzitac, I; Vesselényi, T; Tarcă, R. C. (2011) Identification of ERD using fuzzy inference systems for brain-computer interface, INT J COMPUT COMMUN, ISSN 1841-9836, 6(3):403- 417.
Taniguchi, T; Tanaka, K.; Yamafuji, K.; Wang, O.H. (1999) A new PDC for fuzzy reference models, Proc. of 1999 IEEE Int. Conf. on Fuzzy Systems, Seoul, Korea, 2:898-903. http://dx.doi.org/10.1109/FUZZY.1999.793071
Eksin, I.; Erol, O.K. (2000) A fuzzy identification method for nonlinear systems, Turkish Journal of Electrical Engineering and Computer Sciences, 8(2):125-135.
Hwang, V.-L.; Jan (2002) A DSP-based fuzzy robust tracking control for piezoelectric servosystems, Proc. of 2002 IEEE International Conference on Fuzzy Systems, Honolulu, HI, USA, 2:1410-1415.
Mihai, D. (2004) Discrete fuzzy control loops based on a motor neuro-fuzzy model. Pushing too far a continuous logic?, Proceedings of 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 2:587-592.
Chien, T.-L.; Chen, C.-C.; Tsai, M.-C.; Chen, Y.-C. (2010) Control of AMIRA's ball and beam system via improved fuzzy feedback linearization approach, Applied Mathematical Modelling, 34(12):3791-3804. http://dx.doi.org/10.1016/j.apm.2010.03.020
Cerman, O.; Hušek, P. (2012) Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism, Expert Systems with Applications, 39(11):10269-10277. http://dx.doi.org/10.1016/j.eswa.2012.02.172
Precup, R.-E.; Preitl, S. (1999) Fuzzy Controllers, Editura Orizonturi Universitare Publishers, TimiÅŸoara.
Orlowska-Kowalska, T.; Szabat, K.; Jaszczak, K. (2002) The influence of parameters and structure of PI-type fuzzy-logic controller on DC drive system dynamics, Fuzzy Sets and Systems, 131(2):251-264. http://dx.doi.org/10.1016/S0165-0114(01)00237-8
Precup, R.-E.; Preitl, S.; Faur, G. (2003) PI predictive fuzzy controllers for electrical drive speed control: Methods and software for stable development, Computers in Industry, 52(3):253-270. http://dx.doi.org/10.1016/S0166-3615(03)00130-1
Precup, R.-E.; Preitl, S.; Korondi, P. (2007) Fuzzy controllers with maximum sensitivity for servosystems, IEEE Transactions on Industrial Electronics, 54(3):1298-1310. http://dx.doi.org/10.1109/TIE.2007.893053
Angelov, P.; Lughofer, E.; Zhou X. (2008) Evolving fuzzy classifiers using different model architectures, Fuzzy Sets and Systems, 159(23):3160-3182. http://dx.doi.org/10.1016/j.fss.2008.06.019
Precup, R.-E.; Preitl, S.; Petriu, E.M.; Tar, J.K.; Tomescu, M.L.; Pozna, C. (2009) Generic two-degree-of-freedom linear and fuzzy controllers for integral processes, Journal of The Franklin Institute, 346(10):980-1003. http://dx.doi.org/10.1016/j.jfranklin.2009.03.006
Linda, O.; Manic, M. (2011) Interval yype-2 fuzzy voter design for fault tolerant systems, Information Sciences, 181(14):2933-2950. http://dx.doi.org/10.1016/j.ins.2011.03.008
Khanesar, M. A.; Teshnehlab, M.; Kaynak, O. (2012) Control and synchronization of chaotic systems using a novel indirect model reference fuzzy controller, Soft Computing, 16(7):1253- 1265. http://dx.doi.org/10.1007/s00500-012-0810-z
Di Cairano, S.; Bemporad, A.; Kolmanovsky, I.V.; Hrovat, D. (2007) Model predictive control of magnetically actuated mass spring dampers for automotive applications, International Journal of Control, 80(11):1701-1716. http://dx.doi.org/10.1080/00207170701379804
Dragoş, C.-A.; Preitl, S.; Precup, R.-E.; Petriu, E.M.; Stînean, A.-I. (2011) A comparative case study of position control solutions for a mechatronics application, Proc. of 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary:814-819. http://dx.doi.org/10.1109/AIM.2011.6027095
Angelov, P.; Buswell, R. (2003) Automatic generation of fuzzy rule-based models from data by genetic algorithms, Information Sciences, 150(1-2):17-31. http://dx.doi.org/10.1016/S0020-0255(02)00367-5
Precup, R.-E.; Tomescu, M.-L.; Preitl, S. (2007) Lorenz system stabilization using fuzzy controllers, INT J COMPUT COMMUN, ISSN 1841-9836, 2(3):279-287.
Johanyák, Z.C. (2010) Student evaluation based on fuzzy rule interpolation, Int. J. of Artificial Intelligence, A10(5):37-55.
VašÄák, J.; Madarász, L. (2010) Adaptation of fuzzy cognitive maps-A comparison study, Acta Polytechnica Hungarica, 7(3):109-122.
Sadighi, A.; Kim, W.-J. (2011) Adaptive-neuro-fuzzy-based sensorless control of a smartmaterial actuator, IEEE/ASME Transactions on Mechatronics, 16(2):371-379. http://dx.doi.org/10.1109/TMECH.2010.2045004
Ho, T.H.; Ahn, K.K. (2012) Speed control of a hydraulic pressure coupling drive using an adaptive fuzzy sliding-mode control, IEEE/ASME Transactions on Mechatronics, 17(5):976- 986. http://dx.doi.org/10.1109/TMECH.2011.2153866
Precup, R.-E.; Preitl, S. (2004) Optimisation criteria in development of fuzzy controllers with dynamics, Engineering Applications of Artificial Intelligence, 17(6):661-674. http://dx.doi.org/10.1016/j.engappai.2004.08.004
BlažiÄ, S.; Matko, D.; Å krjanc, I. (2010) Adaptive law with a new leakage term, IET Control Theory & Applications, 4(9):1533-1542. http://dx.doi.org/10.1049/iet-cta.2009.0349
Sánchez Boza, A.; Haber-Guerra, R.; Gajate, A. (2011) Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach, Engineering Applications of Artificial Intelligence, 24(2):209-219. http://dx.doi.org/10.1016/j.engappai.2010.10.005
Liu, T.; Hu, Z. (2011) Immune algorithm with memory coevolution, Int. J. of Artificial Intelligence, 7(A11):189-197.
Niu, B.; Fan, Y.; Wang, H.; Li, L.; Wang, X. (2011) Novel bacterial foraging optimization with time-varying chemotaxis step, International Journal of Artificial Intelligence, 7(A11):257-273.
Damanafshan, M.; Khosrowshahi-Asl, E.; Abbaspour, M. (2012) GASANT: An ant-inspired least-cost QoS multicast routing approach based on genetic and simulated annealing algorithms, INT J COMPUT COMMUN, ISSN 1841-9836, 7(3):417-431.
Rankovic, V.; Radulovic, J.; Grujovic, N.; Divac, D. (2012) Neural network model predictive control of nonlinear systems using genetic algorithms, INT J COMPUT COMMUN, ISSN 1841-9836, 7(3):540-549.
Bacanin, N.; Tuba, M. (2012) Artificial Bee Colony (ABC) algorithm for constrained optimization improved with genetic operators, Studies in Informatics and Control, 21(2):137-146.
Ben Omrane, I.; Chatti, A.; Borne, P. (2012) Evolutionary method for designing and learning control structure of a wheelchair, Studies in Informatics and Control, 21(2):155-164.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.