An Approach to Fuzzy Modeling of Electromagnetic Actuated Clutch Systems

  • Dragoş Claudia-Adina “Politehnica” University of Timisoara Department of Automation and Applied Informatics Bd. V. Parvan 2, 300223 Timisoara
  • Precup Radu-Emil “Politehnica” University of Timisoara Department of Automation and Applied Informatics Bd. V. Parvan 2, 300223 Timisoara
  • Tomescu Marius “Aurel Vlaicu” University of Arad Faculty of Computer Science Complex Universitar M, Str. Elena Dragoi 2, RO-310330 Arad
  • Preitl Stefan “Politehnica” University of Timisoara Department of Automation and Applied Informatics Bd. V. Parvan 2, 300223 Timisoara
  • Petriu Emil M. University of Ottawa School of Electrical Engineering and Computer Science 800 King Edward, Ottawa, ON, K1N 6N5
  • Rădac M.-Bogdan “Politehnica” University of Timisoara Department of Automation and Applied Informatics Bd. V. Parvan 2, 300223 Timisoara

Abstract

This paper proposes an approach to fuzzy modeling of a nonlinear servo system application represented by an electromagnetic actuated clutch system. The nonlinear model of the process is simplified and linearized around several operating points of the input-output static map of the process. Discrete-time Takagi-Sugeno (T-S) fuzzy models of the processes are derived on the basis of the modal equivalence principle; the rule consequents of these T-S fuzzy models contain the state-space models of the process. Three discrete-time T-S fuzzy models are suggested and compared. The simulation results validate the new fuzzy models of the electromagnetic actuated clutch system.

References

[1] Škrjanc, I.; Blažič, S.; Agamennoni O. (2005); Identification of dynamical systems with a robust interval fuzzy model, Automatica, 41(2):327-332.

Identification of dynamical systems with a robust interval fuzzy model, Automatica, 41(2):327-332.
http://dx.doi.org/10.1016/j.automatica.2004.09.010

[2] Johanyák, Z.C. (2010); Survey on five fuzzy inference-based student evaluation methods, in: Computational Intelligence in Engineering, I. J. Rudas, J. Fodor, J. Kacprzyk, Eds., Studies in Computational Intelligence, Springer-Verlag, Berlin, Heidelberg, 313:219-228.
http://dx.doi.org/10.1007/978-3-642-15220-7_18

[3] Vaščˇak, J.; Madarász, L. (2010); Adaptation of fuzzy cognitive maps-a comparison study, Acta Polytechnica Hungarica, 7(3):109-122.

[4] Babu Devasenapati, S.; Ramachandran, K. I. (2011) Hybrid fuzzy model based expert system for misfire detection in automobile engines, Int. J. of Artificial Intelligence, 7(A11):47-62.

[5] Dzitac, I; Vesselényi, T; Tarcă, R. C. (2011) Identification of ERD using fuzzy inference systems for brain-computer interface, INT J COMPUT COMMUN, ISSN 1841-9836, 6(3):403- 417.

[6] Taniguchi, T; Tanaka, K.; Yamafuji, K.; Wang, O.H. (1999) A new PDC for fuzzy reference models, Proc. of 1999 IEEE Int. Conf. on Fuzzy Systems, Seoul, Korea, 2:898-903.
http://dx.doi.org/10.1109/FUZZY.1999.793071

[7] Eksin, I.; Erol, O.K. (2000) A fuzzy identification method for nonlinear systems, Turkish Journal of Electrical Engineering and Computer Sciences, 8(2):125-135.

[8] Hwang, V.-L.; Jan (2002) A DSP-based fuzzy robust tracking control for piezoelectric servosystems, Proc. of 2002 IEEE International Conference on Fuzzy Systems, Honolulu, HI, USA, 2:1410-1415.

[9] Mihai, D. (2004) Discrete fuzzy control loops based on a motor neuro-fuzzy model. Pushing too far a continuous logic?, Proceedings of 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 2:587-592.

[10] Chien, T.-L.; Chen, C.-C.; Tsai, M.-C.; Chen, Y.-C. (2010) Control of AMIRA's ball and beam system via improved fuzzy feedback linearization approach, Applied Mathematical Modelling, 34(12):3791-3804.
http://dx.doi.org/10.1016/j.apm.2010.03.020

[11] Cerman, O.; Hušek, P. (2012) Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism, Expert Systems with Applications, 39(11):10269-10277.
http://dx.doi.org/10.1016/j.eswa.2012.02.172

[12] Precup, R.-E.; Preitl, S. (1999) Fuzzy Controllers, Editura Orizonturi Universitare Publishers, Timişoara.

[13] Orlowska-Kowalska, T.; Szabat, K.; Jaszczak, K. (2002) The influence of parameters and structure of PI-type fuzzy-logic controller on DC drive system dynamics, Fuzzy Sets and Systems, 131(2):251-264.
http://dx.doi.org/10.1016/S0165-0114(01)00237-8

[14] Precup, R.-E.; Preitl, S.; Faur, G. (2003) PI predictive fuzzy controllers for electrical drive speed control: Methods and software for stable development, Computers in Industry, 52(3):253-270.
http://dx.doi.org/10.1016/S0166-3615(03)00130-1

[15] Precup, R.-E.; Preitl, S.; Korondi, P. (2007) Fuzzy controllers with maximum sensitivity for servosystems, IEEE Transactions on Industrial Electronics, 54(3):1298-1310.
http://dx.doi.org/10.1109/TIE.2007.893053

[16] Angelov, P.; Lughofer, E.; Zhou X. (2008) Evolving fuzzy classifiers using different model architectures, Fuzzy Sets and Systems, 159(23):3160-3182.
http://dx.doi.org/10.1016/j.fss.2008.06.019

[17] Precup, R.-E.; Preitl, S.; Petriu, E.M.; Tar, J.K.; Tomescu, M.L.; Pozna, C. (2009) Generic two-degree-of-freedom linear and fuzzy controllers for integral processes, Journal of The Franklin Institute, 346(10):980-1003.
http://dx.doi.org/10.1016/j.jfranklin.2009.03.006

[18] Linda, O.; Manic, M. (2011) Interval yype-2 fuzzy voter design for fault tolerant systems, Information Sciences, 181(14):2933-2950.
http://dx.doi.org/10.1016/j.ins.2011.03.008

[19] Khanesar, M. A.; Teshnehlab, M.; Kaynak, O. (2012) Control and synchronization of chaotic systems using a novel indirect model reference fuzzy controller, Soft Computing, 16(7):1253- 1265.
http://dx.doi.org/10.1007/s00500-012-0810-z

[20] Di Cairano, S.; Bemporad, A.; Kolmanovsky, I.V.; Hrovat, D. (2007) Model predictive control of magnetically actuated mass spring dampers for automotive applications, International Journal of Control, 80(11):1701-1716.
http://dx.doi.org/10.1080/00207170701379804

[21] Dragoş, C.-A.; Preitl, S.; Precup, R.-E.; Petriu, E.M.; Stînean, A.-I. (2011) A comparative case study of position control solutions for a mechatronics application, Proc. of 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary:814-819.
http://dx.doi.org/10.1109/AIM.2011.6027095

[22] Angelov, P.; Buswell, R. (2003) Automatic generation of fuzzy rule-based models from data by genetic algorithms, Information Sciences, 150(1-2):17-31.
http://dx.doi.org/10.1016/S0020-0255(02)00367-5

[23] Precup, R.-E.; Tomescu, M.-L.; Preitl, S. (2007) Lorenz system stabilization using fuzzy controllers, INT J COMPUT COMMUN, ISSN 1841-9836, 2(3):279-287.

[24] Johanyák, Z.C. (2010) Student evaluation based on fuzzy rule interpolation, Int. J. of Artificial Intelligence, A10(5):37-55.

[25] Vaščák, J.; Madarász, L. (2010) Adaptation of fuzzy cognitive maps-A comparison study, Acta Polytechnica Hungarica, 7(3):109-122.

[26] Sadighi, A.; Kim, W.-J. (2011) Adaptive-neuro-fuzzy-based sensorless control of a smartmaterial actuator, IEEE/ASME Transactions on Mechatronics, 16(2):371-379.
http://dx.doi.org/10.1109/TMECH.2010.2045004

[27] Ho, T.H.; Ahn, K.K. (2012) Speed control of a hydraulic pressure coupling drive using an adaptive fuzzy sliding-mode control, IEEE/ASME Transactions on Mechatronics, 17(5):976- 986.
http://dx.doi.org/10.1109/TMECH.2011.2153866

[28] Precup, R.-E.; Preitl, S. (2004) Optimisation criteria in development of fuzzy controllers with dynamics, Engineering Applications of Artificial Intelligence, 17(6):661-674.
http://dx.doi.org/10.1016/j.engappai.2004.08.004

[29] Blažič, S.; Matko, D.; Škrjanc, I. (2010) Adaptive law with a new leakage term, IET Control Theory & Applications, 4(9):1533-1542.
http://dx.doi.org/10.1049/iet-cta.2009.0349

[30] Sánchez Boza, A.; Haber-Guerra, R.; Gajate, A. (2011) Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach, Engineering Applications of Artificial Intelligence, 24(2):209-219.
http://dx.doi.org/10.1016/j.engappai.2010.10.005

[31] Liu, T.; Hu, Z. (2011) Immune algorithm with memory coevolution, Int. J. of Artificial Intelligence, 7(A11):189-197.

[32] Niu, B.; Fan, Y.; Wang, H.; Li, L.; Wang, X. (2011) Novel bacterial foraging optimization with time-varying chemotaxis step, International Journal of Artificial Intelligence, 7(A11):257-273.

[33] Damanafshan, M.; Khosrowshahi-Asl, E.; Abbaspour, M. (2012) GASANT: An ant-inspired least-cost QoS multicast routing approach based on genetic and simulated annealing algorithms, INT J COMPUT COMMUN, ISSN 1841-9836, 7(3):417-431.

[34] Rankovic, V.; Radulovic, J.; Grujovic, N.; Divac, D. (2012) Neural network model predictive control of nonlinear systems using genetic algorithms, INT J COMPUT COMMUN, ISSN 1841-9836, 7(3):540-549.

[35] Bacanin, N.; Tuba, M. (2012) Artificial Bee Colony (ABC) algorithm for constrained optimization improved with genetic operators, Studies in Informatics and Control, 21(2):137-146.

[36] Ben Omrane, I.; Chatti, A.; Borne, P. (2012) Evolutionary method for designing and learning control structure of a wheelchair, Studies in Informatics and Control, 21(2):155-164.
Published
2013-06-02
How to Cite
CLAUDIA-ADINA, Dragoş et al. An Approach to Fuzzy Modeling of Electromagnetic Actuated Clutch Systems. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 8, n. 3, p. 395-406, june 2013. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/218>. Date accessed: 13 july 2020. doi: https://doi.org/10.15837/ijccc.2013.3.218.

Keywords

Discrete-time Takagi-Sugeno fuzzy models; electromagnetic actuated clutch system; linearization; operating points; simulation results