Identification of ERD using Fuzzy Inference Systems for Brain-Computer Interface

  • Ioan Dzitac Aurel Vlaicu University of Arad Department of Mathematics-Informatics Elena Dragoi St., 2, Complex M Arad, Romania
  • Tiberiu Vesselényi University of Oradea Faculty of Management and Technological Engineering Universitatii St. 1, 410087 Oradea, Romania
  • Radu Cătălin Ţarcă University of Oradea Faculty of Management and Technological Engineering Universitatii St. 1, 410087 Oradea, Romania


A Brain-Computer Interface uses measurements of scalp electric potential (electroencephalography - EEG) reflecting brain activity, to communicate with external devices. Recent developments in electronics and computer sciences have enabled applications that may help users with disabilities and also to develop new types of Human Machine Interfaces. By producing modifications in their brain potential activity, the users can perform control of different devices. In order to perform actions, this EEG signals must be processed with proper algorithms. Our approach is based on a fuzzy inference system used to produce sharp control states from noisy EEG data.


[1] Brendan Z. Allison, Dennis J. McFarland, Gerwin Schalk, Shi Dong Zheng, Melody Moore Jackson, Jonathan R. Wolpaw, Towards an independent brain-computer interface using steady state visual evoked potentials, Clinical Neurophysiology, 119(2): 399-408, 2008

[2] Janis J Daly, Jonathan R., Wolpaw, Brain-computer interfaces in neurological rehabilitation, The Lancet Neurology, 7(11): 1032-1043, 2008

[3] Carlo Menon, Cristina de Negueruela, José del R. Millán, Oliver Tonet, Federico Carpi, Michael Broschart, Pierre Ferrez, et. all, Prospects of brain-machine interfaces for space system control, Acta Astronautica, 64(4): 448-456, 2009

[4] Elisabeth V.C. Friedrich, Dennis J. McFarlanda, Christa Neuperb, Theresa M. Vaughan, Peter Brunner, Jonathan R. Wolpaw, A scanning protocol for a sensorimotor rhythm-based brain-computer interface, Biological Psychology, pp. 80(2): 169-175, 2009

[5] Marcel van Gerven, Ole Jensen, Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces, Journal of Neuroscience Methods, 179(1): 78- 84

[6] Lucia Rita Quitadamo, Maria Grazia Marciani, Gian Carlo Cardarilli, Luigi Bianchi, Describing Different Brain Computer Interface Systems Through a Unique Model: A UML Implementation, Neuroinform, 6: 81-96, 2008, DOI 10.1007/s12021-008-9015-0

[7] I.H. Iversen, N. Ghanayim, A. Kübler, N. Neumann, N. Birbaumer, J. Kaiser, A braincomputer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis, Clinical Neurophysiology, 119(10): 2214-2223, 2008

[8] G. Pfurtscheller, T. Solis-Escalante, Could the beta rebound in the EEG be suitable to realize a "brain switch"?, Clinical Neurophysiology, 120(11): 24-29, 2008

[9] Marios G. Philiastides, Paul Sajda, EEG-Informed fMRI Reveals Spatiotemporal Characteristics of Perceptual Decision Making, The Journal of Neuroscience, 27(48):13082-13091, 2007

[10] A. Vuckovic, F. Sepulveda, Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications, Clinical Neurophysiology, 119(2): 446-458, 2008

[11] Oliver Tonet, Martina Marinelli, Luca Citi, Paolo Maria Rossini, Luca Rossini, Giuseppe Megali, et. all, Defining brain -machine interface applications by matching interface performance with device requirements, Journal of Neuroscience Methods, Brain-Computer Interfaces (BCIs), 167(1): 91-104, 2008

[12] Hyun K. Kim, Shinsuk Park, Mandayam A. Srinivasan, Developments in brain-machine interfaces from the perspective of robotics, Human Movement Science, 28(2): 191-203, 2009

[13] Febo Cincotti, Donatella Mattia, Fabio Aloise, Simona Bufalari, Gerwin Schalk, Giuseppe Oriolo, et. all, Non-invasive brain-computer interface system: Towards its application as assistive technology, Brain Research Bulletin, Special Issue: Robotics and Neuroscience, 775(6): 796-803, 2008

[14] F. Galán, M. Nuttin, E. Lew, P.W. Ferrez, G. Vanacker, J. Philips, J. del R. Millán, A brain-actuated wheelchair: Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots, Clinical Neurophysiology, 119(9): 2159-2169, 2008

[15] Chia-Lin Chang, Zhanpeng Jin, Hou-Cheng Chang, Allen C. Cheng, From neuromuscular activation to end-point locomotion: An artificial neural network-based technique for neural prostheses, Journal of Biomechanics, 42(8): 982-988, 2009

[16] Febo Cincotti, Donatella Mattia, Fabio Aloise, Simona Bufalari, Laura Astolfi, Fabrizio De Vico Fallani, et. all, High-resolution EEG techniques for brain-computer interface applications, Journal of Neuroscience Methods, Brain-Computer Interfaces (BCIs), 167(1): 31-42, 2008

[17] Valerie Morash, Ou Bai, Stephen Furlani, Peter Lina, Mark Halletta, Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries, Clinical Neurophysiology, 119(11): 2570-2578, 2008

[18] Vadim V. Nikulin, Friederike U. Hohlefeld, Arthur M. Jacobs, Gabriel Curio, Quasimovements: A novel motor-cognitive phenomenon, Neuropsychologia, 46(2): 727-742, 2008

[19] Farhad Faradji, Rabab K. Ward, Gary E. Birch, Plausibility Assessment of a 2-State Self- Paced Mental Task-Based BCI Using the No-Control Performance Analysis, Journal of Neuroscience Methods, 180(2): 330-339, 2009

[20] Daniel Pérez-Marcos, Jens-Uwe Knote, Reinhard Both, Galina Ivanova, Quantification of cognitive-induced brain activity: An efficient method for online applications, Computers in Biology and Medicine, 38(11-12): 1194-1202, 2008

[21] Seong-eun Ro, Joon Hwan Choi, Taejeong Kim, A new action potential classifier using 3- Gaussian model fitting, Advances in Neural Information Processing (ICONIP 2006) / Brazilian Symposium on Neural Networks (SBRN 2006), Neurocomputing, 71(16-18): 3631-3634, 2008

[22] Mingjun Zhong, Fabien Lotte, Mark Girolami, Anatole Lécuyer, Classifying EEG for brain computer interfaces using Gaussian processes, Pattern Recognition Letters, 29(3):354-359, 2008

[23] Jo-Anne Ting, Aaron D'Souza, Kenji Yamamoto, Toshinori Yoshioka, Donna Hoffman, Shinji Kakeif, et. all, Variational Bayesian least squares: An application to brain -machine interface data, Neural Networks, 21(8): 1112-1131, 2008

[24] Tonio Balla, Evariste Demandt, Isabella Mutschler, Eva Neitzel, Carsten Mehring, Klaus Vogt, et. all, Movement related activity in the high gamma range of the human EEG, NeuroImage, 41(2): 302-310, 2008

[25] Shang-Ming Zhou, John Q. Gan, Francisco Sepulveda, Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface, Information Sciences, 178(6): 1629-1640, 2008

[26] F. Darvas, J.G. Ojemann, L.B. Sorensen, Bi-phase locking - a tool for probing non-linear interaction in the human brain, NeuroImage, 46(1): 123-132, 2009

[27] Wei-Yen Hsu, Yung-Nien Sun, EEG-based motor imagery analysis using weighted wavelet transform features, Journal of Neuroscience Methods, 175(2): 310-318, 2009

[28] Wu Ting, Yan Guo-zheng, Yang Bang-hua, Sun Hong, EEG feature extraction based on wavelet packet decomposition for brain computer interface, Measurement, 41(6): 618-62, 2008

[29] Dean Cvetkovic, Elif Derya Übeyli, Irena Cosic, Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: A pilot study, Digital Signal Processing, 18(5): 861-874, 2008

[30] Vahid Abootalebi, Mohammad Hassan Moradib, Mohammad Ali Khalilzadeh, A new approach for EEG feature extraction in P300-based lie detection, Computer Methods and Programs in Biomedicine, 94(1): 48-57, 2009

[31] R. Murat Demirer, Mehmet Sirac Ozerdem, Coskun Bayrak, Classification of imaginary movements in ECoG with a hybrid approach based on multi-dimensional Hilbert-SVM solution, Journal of Neuroscience Methods, 178(1): 214-218, 2009

[32] W. A. Chaovalitwongse, P. M. Pardalos, On the time series support vector machine using dynamic time warping kernel for brain activity classification, Cybernetics and Systems Analysis, 44(1): 125-138, 2008

[33] Andreas Trřllund Boy, Ulrik Qvist Kristiansen, Martin Billinger, Omar Feix do Nascimento, Dario Farina, Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis, Biomedical Signal Processing and Control, 3(4): 300-304, 2008

[34] Gholamreza Salimi-Khorshidi, Ali Motie Nasrabadi, Mohammadreza Hashemi Golpayegani, Fusion of classic P300 detection methods' inferences in a framework of fuzzy labels, Artificial Intelligence in Medicine, 44(3): 247-259, 2008

[35] Vito Logar, Igor Škrjanc, Aleš Belič, Simon Brežan, Blaž Koritnik, Janez Zidar, Identification of the phase code in an EEG during gripping-force tasks: A possible alternative approach to the development of the brain-computer interfaces, Artificial Intelligence in Medicine, 44(1): 41-49, 2008

[36] Dzitac S., Felea I., Dzitac I., Vesselenyi T., (2008), An Application of Neuro-Fuzzy Modelling to Prediction of some Incidence in an Electrical Energy Distribution Center, International Journal of Computers, Communications and Control, ISSN 1841-9836, 3(S):287-292, 2008

[37] Coyle D, Prasad G, McGinnity T.M., Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a brain-computer interface, IEEE Trans Syst Man Cybern B Cybern., 39(6):1458-71, 2009

[38] Palaniappan R., Paramesran R., Nishida S., Saiwaki N., A new brain-computer interface design using fuzzy ARTMAP, IEEE Transactions on neural systems and rehabilitation engineering, ISSN 1534-4320, 10(3): 140-148, 2002

[39] Bang-hua Y., Guo-zheng Y., Ting W., Rong-guo Y., Subject-based feature extraction using fuzzy wavelet packet in brain-computer interfaces, Signal Processing, 87(7): 1569-1574, 2007

[40] Vesselenyi T., Dzitac I., Dzitac S., Hora C., Porumb C., Preliminary Issues On Brain- Machine Contextual Communication Structure Development, Soft Computing Applications, 2009. SOFA '09. 3rd International Workshop on, ISBN 978-1-4244-5054-1, pp.37-42, IEEE Xplore DOI 10.1109/SOFA.2009.5254882, 2009

[41] Darvishi, S.; Al-Ani, A. Brain-Computer Interface Analysis using Continuous Wavelet Transform and Adaptive Neuro-Fuzzy Classifier, Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 3220 - 3223.

[42] Pfurtscheller, G.: EEG event-related desynchronization (ERD) and event-related synchronization (ERS), In E. Niedermeyer, F.H. Lopes da Silva (eds.) Electroencephalography: basic principles, clinical applications and related fields, 4th edition, Williams and Wilkins, Baltimore, MD, 958-967, 1999

[43] Zadeh L. A., The Role of Fuzzy Logic in Modeling, Identification and Control, Modeling, Identification and Control, 15(3):191-203, 1994

[44] Zadeh L. A., Fuzzy Logic and the Calculus of Fuzzy If-Then Rules, Proceedings of SYNAPSE'91, Tokyo, Japan, 1991

[45] Zadeh L. A., Toward extended fuzzy logic-A first step, Fuzzy Sets and Systems, 160: 3175- 3181, 2009

[46] ***, MATLAB, User Guide, MathWorks, 2008
How to Cite
DZITAC, Ioan; VESSELÉNYI, Tiberiu; ŢARCĂ, Radu Cătălin. Identification of ERD using Fuzzy Inference Systems for Brain-Computer Interface. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 6, n. 3, p. 403-417, sep. 2011. ISSN 1841-9844. Available at: <>. Date accessed: 22 may 2022.


Event Related Desynchronization (ERD), Brain-Computer Interface (BCI), electroencephalography (EEG), fuzzy inference system.