A Unified Anti-Windup Technique for Fuzzy and Sliding Mode Controllers

  • Radu Emil Precup
  • Marius L. Tomescu
  • Emil M. Petriu

Abstract

This paper proposes the unified treatment of an anti-windup technique for fuzzy and sliding mode controllers. A back-calculation and tracking anti-windup scheme is proposed in order to prevent the zero error integrator wind-up in the structures of state feedback fuzzy controllers and sliding mode controllers. The state feedback sliding mode controllers are based on the state feedback-based computation of the switching variable. An example that copes with the position control of an electro-hydraulic servo-system is presented. The conclusions are pointed out on the basis of digital simulation results for the state feedback fuzzy controller.

References

[1] Bohn, C.; Atherton, D. P. (1995); An analysis package comparing PID anti-windup strategies, IEEE Control Systems Magazine, 15(2):34-40.

[2] Peng, Y.; Vrančić, D.; Hanus, R.; Weller, S. S. R. (1998); Anti-windup designs for multivariable controllers, Automatica, 34(12):1559-1565.

[3] Tharayil, M.; Alleyne, A. (2002); A generalized PID error governing scheme for SMART/SBLI control, Proceedings of 2002 American Control Conference, Anchorage, AK, USA, 1:346-351.

[4] Åström, K. J.; Hägglund, T. (2006); Advanced PID Control, Instrument Society of America, Research Triangle Park, NC.

[5] Wu, X.; Lin, Z. (2012); On immediate, delayed and anticipatory activation of anti-windup mechanism: Static anti-windup case, IEEE Transactions on Automatic Control, 57(3):771- 777.

[6] Fišer, J.; Šulc, B. (2001); Sliding mode control design with anti wind-up, Proceedings of XXVI. ASR'2001 Seminar, Instruments and Control, Ostrava, Czech Republic, Paper ID 17:1-8.

[7] Herrmann, G.; Turner, M. C.; Postlethwaite, I; Guo G. (2004); Practical implementation of a novel anti-windup scheme in a HDD-dual-stage servo-system, IEEE/ASME Transactions on Mechatronics, 9(3):580-592.

[8] Kanamori, M.; Iwagami, K. (2014); Novel anti-windup PID controller design under holonomic endpoint constraints for Euler-Lagrange systems with actuator saturation, Preprints of 19th IFAC World Congress, Cape Town, South Africa, pp. 9321-9326.

[9] Chiang, H.-H.; Hsu, K.-C.; Li I.-H. (2015); Optimized adaptive motion control through an SoPC implementation for linear induction motor drives, IEEE/ASME Transactions on Mechatronics, 20(1):348-360.

[10] Septanto, H.; Syaichu-Rohman, A.; Mahayana, D. (2011); Static anti-windup compensator design of linear sliding mode control for input saturated systems, Proceedings of 2011 International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, pp. 1-4.

[11] Yokoyama, M.; Kim, G.-N.; Tsuchiya, M. (2012); Integral sliding mode control with antiwindup compensation and its application to a power assist system, Journal of Vibration and Control, 16(4):503-512.

[12] Lee, J. M.; Park, S. H.; Kim, J. S. (2013); Design and experimental evaluation of a robust position controller for an electrohydrostatic actuator using adaptive antiwindup sliding mode scheme, The Scientific World Journal, Vol. 2013, Article ID 590708, pp. 1-16.

[13] Zaafouri, C.; Garcia, G. (2013); Comparative study of the saturated sliding mode and antiwindup controllers, Proceedings of 2013 International Conference on Electrical Engineering and Software Applications, Hammamet, Tunisia, pp. 1-6.

[14] Preitl, S.; Precup, R.-E. (1995); On the opportunity of ARW measures in fuzzy control, in: Real World Applications of Intelligent Technologies, H.-J. Zimmermann, M. G. Negoita, D. Dascalu, Eds., Editura Academiei Romane, Bucharest, pp. 149-153.

[15] Zhang, T.; Feng, G.; Liu, H.; Lu, J. (2009); Piecewise fuzzy anti-windup dynamic output feedback control of nonlinear processes with amplitude and rate actuator saturations, IEEE Transactions on Fuzzy Systems, 17(2):253-264 .

[16] Ting, C.-S.; Chang, Y.-N. (2011); Robust anti-windup controller design of time-delay fuzzy systems with actuator saturations, Information Sciences, 181(15):3225-3245.

[17] Precup, R.-E.; Preitl, S. (1997); Popov-type stability analysis method for fuzzy control systems, Proceedings of Fifth European Congress on Intelligent Technologies and Soft Computing, Aachen, Germany, (2):1306-1310.

[18] Precup, R.-E.; Preitl, S. (1999); Fuzzy Controllers, Editura Orizonturi Universitare, Timişoara, 1999.

[19] Precup, R.-E.; Preitl, S.; Balas, M.; Balas, V. (2004); Fuzzy controllers for tire slip control in anti-lock braking systems, Proceedings of IEEE International Conference on Fuzzy Systems, Budapest, Hungary, (3):1317-1322.

[20] Precup, R.-E.; Preitl, S. (2006); Stability and sensitivity analysis of fuzzy control systems. Mechatronics applications, Acta Polytechnica Hungarica, 3(1):61-76.

[21] Tomescu, M. L.; Preitl, S.; Precup, R.-E.; Tar, J. K. (2007); Stability analysis method for fuzzy control systems dedicated controlling nonlinear processes, Acta Polytechnica Hungarica, 4(3):127-141.

[22] Precup, R.-E.; Tomescu, M. L.; Preitl, S. (2009); Fuzzy logic control system stability analysis based on Lyapunov's direct method, International Journal of Computers, Communications & Control, 4(4):415-426.

[23] Precup, R.-E.; Tomescu, M. L.; Radac, M.-B.; Petriu, E. M.; Preitl, S.; Dragos, C.-A. (2012); Iterative performance improvement of fuzzy control systems for three tank systems, Expert Systems with Applications, 39(9):8288-8299.

[24] Precup, R.-E.; Radac, M.-B.; Tomescu, M. L.; Petriu, E. M.; Preitl, S. (2013); Stable and convergent iterative feedback tuning of fuzzy controllers for discrete-time SISO systems, Expert Systems with Applications, 40(1):188-199.

[25] Precup, R.-E.; David, R.-C.; Petriu, E. M.; Radac, M.-B.; Preitl, S. (2014); Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness, IEEE Transactions on Cybernetics, 44(11):1997-2009.

[26] Zadeh, L. A. (1974); Fuzzy logic and its application to approximate reasoning, Proceedings of IFIP Congress 74, Stockholm, Sweden, pp. 591-594.

[27] Zadeh, L. A. (1994); Fuzzy logic: issues, contentions and perspectives, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP94, Adelaide, SA, Australia, pp. 183-184.

[28] Zadeh, L. A. (2013); Stochastic finite-state systems in control theory, Information Sciences, 251:1-9.

[29] Mitroi, F. C.; Minculete, N. (2013); Mathematical inequalities for biparametric extended information measures, Journal of Mathematical Inequalities, 7(1):63-71.

[30] Nădăban, S.; Dzitac, I, (2014); Atomic decompositions of fuzzy normed linear spaces for wavelet applications, Informatica, 25(4):643-662.

[31] Gál, L.; Lovassy, R.; Rudas, I. J.; Kóczy, L. T. (2014); Learning the optimal parameter of the Hamacher t-norm applied for fuzzy-rule-based model extraction, Neural Computing and Applications, 24(1):133-142.

[32] Nădăban, S. (2015); Fuzzy Euclidean normed spaces for data mining applications, International Journal of Computers, Communications & Control, 10(1):70-77.

[33] Nădăban, S. (2014); Fuzzy pseudo-norms and fuzzy F-spaces, Fuzzy Sets and Systems, DOI: 10.1016/j.fss.2014.12.010.
http://dx.doi.org/10.1016/j.fss.2014.12.010

[34] Nădăban, S.; Dzitac, I (2014); Special Types of Fuzzy Relations, Procedia Computer Science, 31C:552-557.

[35] Škrjanc, I; Blažič, S.; Agamennoni, O. E. (2005); Interval fuzzy model identification using l1-norm, IEEE Transactions on Fuzzy Systems, 13(5):561-568.

[36] Johanyćk, Z.C. (2010); Survey on five fuzzy inference-based student evaluation methods, in: Computational Intelligence in Engineering, I. J. Rudas, J. Fodor, J. Kacprzyk, Eds., Studies in Computational Intelligence, Springer-Verlag, Berlin, Heidelberg, Vol. 313, pp. 219-228.
http://dx.doi.org/10.1007/978-3-642-15220-7_18

[37] Vaščák, J. (2010); Approaches in adaptation of fuzzy cognitive maps for navigation purposes, Proceedings of 8th International Symposium on Applied Machine Intelligence and Informatics, Heržany, Slovakia, pp. 31-36, 2010.

[38] Linda, O.; Manic, M. (2011); Interval type-2 fuzzy voter design for fault tolerant systems, Information Sciences, 181(14):2933-2950.

[39] Dragos, C.-A.; Precup, R.-E.; Tomescu, M. L.; Preitl, S.; Petriu, E. M.; Radac, M.-B. (2013); An approach to fuzzy modeling of electromagnetic actuated clutch systems, International Journal of Computers, Communications & Control, 8(3):395-406.

[40] Teodorescu, H.-N. L. (2013); On the characteristic functions of fuzzy systems, International Journal of Computers, Communications & Control, 8(3):469-476.

[41] Jafarian, A. ( 2014); New artificial intelligence approach for solving fuzzy polynomial equations, International Journal of Artificial Intelligence, 12(2):57-74.

[42] Baranyi, P.; Tikk, D.; Yam, Y.; Patton, R. J. (2003); From differential equations to PDC controller design via numerical transformation, Computers in Industry, 51(3):281-297.

[43] Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K. (2011); Experiment-based teaching in advanced control engineering, IEEE Transactions on Education, 54(3):345-355.

[44] Precup, R.-E.; Dragos, C.-A.; Preitl, S.; Radac, M.-B.; Petriu, E. M. (2012); Novel tensor product models for automatic transmission system control, IEEE Systems Journal, 6(3):488- 498.

[45] Angelov, P.; Yager, R. (2013); Density-based averaging - A new operator for data fusion, Information Systems, 222:163-174.

[46] Bălănică, V.; Dumitrache, I.; Preziosi, L. (2013); Breast cancer diagnosis based on spiculation feature and neural network techniques, International Journal of Computers, Communications & Control, 8(3):354-365.

[47] Osaba, E.; Diaz, F.; Onieva, E.; Carballedo, R.; Perallos, A. (2014); AMCPA: A population metaheuristic with adaptive crossover probability and multi-crossover mechanism for solving combinatorial optimization problems, International Journal of Artificial Intelligence, 12(2):1- 23.

[48] Popescu, D.; Cirstoiu, S. (2014); A simulator for the multi-model control of Diesel engines, Studies in Informatics and Control, 23(4):381-386.

[49] Yu, X.; Kaynak, O. (2009); Sliding-mode control with soft computing: A survey, IEEE Transactions on Industrial Electronics, 56(9):3275-3285.

[50] Antić, D.; Milojković, M.; Jovanović, Z.; Nikolić, S. (2010); Optimal design of the fuzzy sliding mode control for a DC servo drive, Strojniški vestnik - Journal of Mechanical Engineering, 56(7-8):455-463.

[51] Al-Hadithi, B. M.; Barragán, A. J.; Andújar, J. M.;Jiménez, A. (2013); Variable structure control with chattering elimination and guaranteed stability for a generalized T-S model, Applied Soft Computing, 13(12):4802-4812.

[52] Milosavljević, C.; Perunicić-Drazenović, B. Veselić, B. (2013); Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation, IEEE Transactions on Industrial Informatics, 9(2):920-927.

[53] Liu, Z.; Su, H.; Pa, S. (2014); A new adaptive sliding mode control of uncertain nonlinear systems, Asian Journal of Control,16(1):198-208.

[54] Filip, F.-G.; Leiviskä, K. (2009); Large-scale complex systems, in: Springer Handbook of Automation, S. Y. Nof, Ed., Springer-Verlag, Berlin, Heidelberg, pp. 619-638.
http://dx.doi.org/10.1007/978-3-540-78831-7_36

[55] Precup, R.-E.; David, R.-C.; Petriu, E. M.; Preitl, S.; Paul, A. S. (2011); Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity, in: Soft Computing in Industrial Applications, A. Gaspar-Cunha, R. Takahashi, G. Schaefer, L. Costa, Eds., Springer-Verlag, Berlin, Heidelberg, Advances in Intelligent and Soft Computing, Vol. 96, pp. 141-150.
http://dx.doi.org/10.1007/978-3-642-20505-7_12

[56] Penedo, F.; Haber, R. E.; Gajate, A.; del Toro, R. M. (2012); Hybrid incremental modeling based on least squares and fuzzy K-NN for monitoring tool wear in turning processes, IEEE Transactions on Industrial Informatics, 8(4):811-818.

[57] Barchinezhad, S.; Eftekhari, M. (2014); A new fuzzy and correlation based feature selection method for multiclass problems, International Journal of Artificial Intelligence, 12(2):24-41.

[58] Astudillo, L.; Melin, P.; Castillo, O. (2015); Introduction to an optimization algorithm based on the chemical reactions, Information Sciences, 291:85-95.

[59] Bühler, H. (1986); Réglage par mode de glissement, Presses Polytechniques Romandes, Lausanne.

[60] Utkin, V. I. (1997); Variable structure systems with sliding modes, IEEE Transactions on Automatic Control, AC-22(2):212-222.

[61] Precup, R.-E.; Hellendoorn, H. (2011); A survey on industrial applications of fuzzy control, Computers in Industry, 62(3):213-226.

[62] Preitl, S.; Precup, R.-E. (1993); Anti-Reset-Windup (ARW) structure for speed control of hydrogenerators, Proceedings of CSCS-9 International Conference, Bucharest, Romania, 2:390-397.

[63] Preitl, S. (1986); Aspects concerning the algorithmic design of electro-hydraulic servosystems for speed controllers, Proceedings of CCSITEH National Symposium, Timisoara, Romania, pp. 143-149 (in Romanian).
Published
2015-10-03
How to Cite
PRECUP, Radu Emil; TOMESCU, Marius L.; PETRIU, Emil M.. A Unified Anti-Windup Technique for Fuzzy and Sliding Mode Controllers. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 10, n. 6, p. 83-95, oct. 2015. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2075>. Date accessed: 08 july 2020. doi: https://doi.org/10.15837/ijccc.2015.6.2075.

Keywords

Anti-windup technique, electro-hydraulic servo-system, fuzzy control, saturation, sliding mode control, digital simulation.