Fuzzy Robust Tracking Control for Uncertain Nonlinear Time-Delay System

  • Zhenbin Du
  • Tsung Chih Lin
  • Tiebiao Zhao

Abstract

The problem of fuzzy robust tracking control is investigated for uncertain nonlinear time-delay systems. The nonlinear time-delay system is modeled as uzzy Takagi-Sugeno (T-S) system, and fuzzy logic systems are used to eliminate the ncertainties of the system. A sufficient condition for the existence of fuzzy controller s given in terms of linear matrix inequalities (LMIs) and adaptive law. Based on yapunov stability theorem, the fuzzy control scheme guarantees the desired tracking erformance in sense that all the closed-loop signals are uniformly ultimately bounded (UUB). Simulation results of 2-link manipulator demonstrate the effectiveness of the eveloped control scheme.

References

[1] T. Takagi; M. Sugeno. (1985); Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man, and Cybernetics, ISSN 0018-9472, SMC-15(1):116-132.

[2] J.-W.Wang; H.-N.Wu; H.-X. Li. (2011); Distributed fuzzy control design of nonlinear hyperbolic PDE systems with application to nonisothermal plug-flow reactor, IEEE Transactions on Fuzzy Systems, ISSN 1063-6706, 19(3): 514 - 526.

[3] D.W. Kim;H.J. Lee. (2012); Sampled-data observer-based output-feedback fuzzy stabilization of nonlinear systems: Exact discrete-time design approach, Fuzzy Sets and Systems, ISSN 0165-0114, 201(16): 20-39.

[4] G.K. Koo;J.B. Park;Y.H. Joo. (2013); Guaranteed cost sampled-data fuzzy control for nonlinear systems: a continuous-time Lyapunov approach, IET Control Theory and Applications, ISSN 1751-8644, 7(13): 1745–1752.

[5] Y.-S. Zhang;S.-Y. Xu;Y. Zou;J.-J. Lu. (2011); Delay-dependent robust stabilization for uncertain discrete-time fuzzy Markovian jump systems with mode-dependent time delays, Fuzzy Sets and Systems, ISSN 0165-0114, 164(1):66-81.

[6] J. Yoneyama. (2012); Robust sampled-data stabilization of uncertain fuzzy systems via input delay approach, Information Sciences, ISSN 0020-0255, 198 (1): 169-176.

[7] J. Yoneyama. (2013); Robust H8 filtering for sampled-data fuzzy systems, Fuzzy Sets and Systems, ISSN 0165-0114, 217(16) : 110-129.

[8] Z.-Y. Xi;G. Feng;T. Hesketh. (2011); Piecewise Integral Sliding-Mode Control for T–S Fuzzy Systems, IEEE Transactions on Fuzzy Systems, ISSN 1063-6706, 19(1): 65-74.

[9] J. Chen;F.Sun;Y.Yin;C.Hu. (2011); State feedback robust stabilization for discrete-time fuzzy singularly perturbed systems with parameter uncertainty, IET Control Theory and Applications, ISSN 1751-8644, 5(10): 1195 - 1202.

[10] C.-H. Lien;J.-D. Chen;K.-W. Yu;L.-Y.Chung. (2012); Robust delay-dependent H8 control for uncertain switched time-delay systems via sampled-data state feedback input, Computers and Mathematics with Applications, ISSN 0898-1221 , 64(5):1187-1196.

[11] L.-X. Wang. (1993); Stable adaptive fuzzy control of nonlinear systems, IEEE Transactions on Fuzzy Systems, ISSN 1063-6706,1(3):146-155.

[12] W.-S. Chen;Z.-Q. Zhang. (2010); Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign, Fuzzy Sets and Systems, ISSN 0165-0114,161(6): 821-836.

[13] Z.-B. Du;T.-C. Lin;V. E. Balas. (2012); A new approach to nonlinear tracking control based on fuzzy approximation, International Journal of Computers, Communications and Control, ISSN 1841-9836,7(1):61-72.

[14] W.-S. Yu. (2004); Tracking-based adaptive fuzzy-neural control for MIMO uncertain robotic systems with time delays, Fuzzy Sets and Systems, ISSN 0165-0114,146(3): 375-401
Published
2015-10-03
How to Cite
DU, Zhenbin; LIN, Tsung Chih; ZHAO, Tiebiao. Fuzzy Robust Tracking Control for Uncertain Nonlinear Time-Delay System. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 10, n. 6, p. 52-64, oct. 2015. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2072>. Date accessed: 21 oct. 2020. doi: https://doi.org/10.15837/ijccc.2015.6.2072.

Keywords

fuzzy T-S model; fuzzy logic systems; nonlinear system; time-delay; tracking control