Energy Synchronized Transmission Control for Energy-harvesting Sensor Networks

Abstract

Energy harvesting and recharging techniques have been regarded as a promising solution to ensure sustained operations of wireless sensor networks for longterm applications. To deal with the diversity of energy harvesting and constrained energy storage capability, sensor nodes in such applications usually work in a duty-cycled mode. Consequently, the sleep latency brought by duty-cycled operation is becoming the main challenge. In this work, we study the energy synchronization control problem for such sustainable sensor networks. Intuitively, energy-rich nodes can increase their transmission power in order to improve network performance, while energy-poor nodes can lower transmission power to conserve its precious energy resource. In particular, we propose an energy synchronized transmission control scheme (ESTC) by which each node adaptively selects suitable power levels and data forwarders according to its available energy and traffic load. Based on the large-scale simulations, we validate that our design can improve system performance under different network settings comparing with common uniform transmission power control strategy. Specially, ESTC can enable the perpetual operations of nodes without sacrificing the network lifetime.

Author Biographies

Zuzhi Fan, Department of Mathematics, Jinan University Guangzhou 510632, China *Corresponding author: tfanzz@jnu.edu.cn
assistant professor, department of mathematics
Xiaoli Liu, jinan university
assistant professor, Computing center

References

[1] M. Li et al (2009), Canopy Closure Estimates with GreenOrbs: Sustainable Sensing in the Forest, ACM Sensys, Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, 99-112.

[2] V. Dyo et al (2010), Evolution and Sustainability of a Wildlife Monitoring Sensor Network, ACM Sensys, Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, 127-140.
http://dx.doi.org/10.1145/1869983.1869997

[3] Vigorito, Christopher M et al (2007), Adaptive control of duty cycling in energy-harvesting wireless sensor networks, IEEE SECON, 21-30.

[4] ST Guo et al (2013), Mobile data gathering with wireless energy replenishment in rechargeable sensor networks, IEEE Infocom, 1932-1940.

[5] Berbakov, Lazar et al (2014), Joint optimization of transmission policies for collaborative beamforming with energy harvesting sensors, IEEE Transactions on Wireless Communications, 13(7):3496-3509.
http://dx.doi.org/10.1109/TWC.2014.2323268

[6] Cheng, Maggie X., et al. (2011); Cross-layer throughput optimization with power control in sensor networks, IEEE Transactions on Vehicular Technology, 60(7): 3300-3308.
http://dx.doi.org/10.1109/TVT.2011.2160883

[7] D. J. Vergados et al (2008), Energy-Efficient Route Selection Strategies for Wireless Sensor Networks, Mobile Network and Applications, 12:285-296.
http://dx.doi.org/10.1007/s11036-008-0098-5

[8] T. Zhu et al (2009), Leakage-Aware Energy Synchronization for Wireless Sensor Networks, MobiSys09, Proceedings of the 7th international conference on Mobile systems, applications, and services, 319-332.

[9] G.W. Challen et al (2010), IDEA: Integrated Distributed Energy Awareness for Wireless Sensor Networks, MobiSys10, Proceedings of the 8th international conference on Mobile systems, applications, and services, 35-48.
http://dx.doi.org/10.1145/1814433.1814439

[10] Y. Gu et al (2014), Achieving energy-synchronized communication in energy-harvesting wireless sensor networks, ACM Transactions on Embedded Computing Systems (TECS), 13(2s):68.
http://dx.doi.org/10.1145/2544375.2544388

[11] A. Kansal et al (2007), Power management in energy harvesting sensor networks, ACM Transactions on Embedded Computing Systems, 6(4):32.
http://dx.doi.org/10.1145/1274858.1274870

[12] F. Liu et al (2010), Joint routing and sleep scheduling for lifetime maximization of wireless sensor networks, IEEE Transactions on Wireless Communications, 9(7):2258–2267.
http://dx.doi.org/10.1109/TWC.2010.07.090629

[13] R. Wattenhofer et al (2001), Distributed Topology Control for Power Efficient Operation in Multihop Wireless Ad Hoc Networks, INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 3: 1388-1397.

[14] Cotuk H, Bicakci K, Tavli B, et al. (2014); The impact of transmission power control strategies on lifetime of wireless sensor networks, IEEE Transactions on Computers, 63(11): 2866- 2879.
http://dx.doi.org/10.1109/TC.2013.151

[15] Z. Fan et al (2015), Delay-Bounded Transmission Power Control for Low-Duty-Cycle Sensor Networks, IEEE Transactions on Wireless Communications, 14(6):3157–3170.
http://dx.doi.org/10.1109/TWC.2015.2402681

[16] Renner, Christian et al (2014), Online energy assessment with supercapacitors and energy harvesters, Sustainable Computing: Informatics and Systems, 4(1):10–23.
http://dx.doi.org/10.1016/j.suscom.2013.07.002

[17] Y. Gu and T. He (2010), Bounding Communication Delay in Energy Harvesting Sensor Networks, Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on, 837-847.

[18] D. S. J. D. Couto et al (2003), A HighThroughput Path Metric for MultiHop Wireless Routing, MobiCom 03, Proceedings of the 9th annual international conference on Mobile computing and networking, 136-146.

[19] G. Lu et al (2005), Delay Efficient Sleep Scheduling in Wireless Sensor Networks, INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, 4: 2470-2481.

[20] S. Lin et al (2006), ATPC: Adaptive transmission power control for wireless sensor networks, SenSys06, Proceedings of the 4th international conference on Embedded networked sensor systems, 223-236 .
http://dx.doi.org/10.1145/1182807.1182830

[21] Z. Fan (2013), Delay-Driven Routing for Low-Duty-Cycle Sensor Networks, International Journal of Distributed Sensor Networks, Volume 2013, Article198283, 11 pages, http://dx.doi.org/10.1155/2013/198283.
http://dx.doi.org/10.1155/2013/198283

[22] S. Singh et al (1998), Power-Aware Routing in Mobile Ad Hoc Networks, Mobile Computing and Networking, DOI:10.1145/288235.288286, 181–190.
http://dx.doi.org/10.1145/288235.288286

[23] http://www.ti.com/
Published
2016-01-26
How to Cite
FAN, Zuzhi; LIU, Xiaoli. Energy Synchronized Transmission Control for Energy-harvesting Sensor Networks. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 11, n. 2, p. 194-208, jan. 2016. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2049>. Date accessed: 29 sep. 2020. doi: https://doi.org/10.15837/ijccc.2016.2.2049.

Keywords

Wireless sensor networks; Energy harvest; Transmission control