A Taboo Search Optimization of the Control Law of Nonlinear Systems with Bounded Uncertainties

  • Amira Gharbi
  • Mohamed Benrejeb
  • Pierre Borne

Abstract

The aim of this paper is to propose a method to determine among the eligible controls of a nonlinear system, with bounded perturbations, the one which minimizes the final error. The approach is based on the implementation of aggregation techniques using vector norms in order to determine a comparison system used to calculate an attractor in view of its minimization by implementation of metaheuristics.

Author Biographies

Amira Gharbi
Ecole Nationale d'Ingénieurs de TunisEcole Centrale de Lille
Pierre Borne
Ecole Centrale de Lille

References

[1] Benrejeb, M. ; Borne, P. (1978); On an algebraic stability criterion for non-linear processe, Interpretation in the frequency domain, Measurement and Control International Symposium MECO, Athens: 678-682.

[2] Gharbi, A.; Benrejeb, M. ; Borne, P. (2013); On nested attractors of complex continuous systems determination, Proceedings of the Romanian Academy, Series A, 14(2):259-265.

[3] Gharbi, A.; Benrejeb, M. ; Borne, P. (2013); New Approach for the Control and the Determination of Attractors for Nonlinear Systems, 2nd International Conference on Systems and Computer Science (ICSCS), Villeneuve d'Ascq, France, August 26-27.

[4] Gharbi, A.; Benrejeb, M. ; Borne, P. (2014); Tracking error estimation of uncertain Lur'e Postnikov systems, 2nd International Conference on Control, Decision and Information Technologies (CoDIT'14) Metz, France, November 3-5.

[5] Benrejeb, M. (2010); Stability study of two level hierarchical nonlinear systems. Large Scale Complex Systems Theory and Applications IFAC Symposium, Plenerylecture,Lille, 9(1), 30- 41.

[6] Borne, P.; Benrejeb, M. (2008);

On the representation and the stability study of large scale systems, International Journal of Computers Communications and Control, 3(5): 55-66.

[7] Borne, P. (1987); Nonlinear system stability. Vector norm approach, System and Control Encyclopedia,Pergamon Press, Lille, France, 5:3402-3406.

[8] Gentina, J.C.; Borne, P.; Burgat, C.; Bernussou, J., : Grujic, L.T. (1979). Sur la stabilite des systmes de grande dimension. Normes vectorielles, 13(1):57-75.

[9] Gentina, J.C.; Borne, P.; Laurent, F. (1972a). Stabilite des systmes continus non linéaires de grande dimension,RAIRO, Aôut:69-77.

[10] Gentina, J.C.; Borne, P. (1972b), Sur une condition d'application du critcre de stabilité linéaire certaines classes de systmes continus non linéaires, CRAS, Paris, T. 275: 401-404.

[11] Grujic, L.T.; Gentina, J.C.; Borne, P.; Burgat, C.; Bernussou, J. (1978). Sur la stabilité des systmes de grande dimension. Fonctions de Lyapunov vectorielles,RAIRO, 12(4):319-348.

[12] Grujic, L.T.; Gentina, J.C.; Borne, P. (1976). General aggregation of large scale systems by vector Lyapunov functions and vector norms,Inernational.Journal.of Control, 24(4): 29-550.
http://dx.doi.org/10.1080/00207177608932843

[13] Stefanoiu, D.; Borne , P.; Popescu, D.; Filip, F. G. ; El Kamel, A.(2014); Optimization in engineering sciences. Metaheuristics, Stochastic method and Decision support, ISTE, Wiley:20-39.

[14] Siljac, D. D. (1972); Stability of large scale systems under structural perturbations. IEEETrans. On Syst. Manand Cyber, 2(5).

[15] Borne, P.; Richard, J.P.; Radhy, N.E. (1996). Stability, stabilization, regulation using vector norms, Nonlinear Systems, 2, Stability and Stabilization,Chapman and Hall, Chapter 2; 45- 90.

[16] Ghédira K., (2007); Optimisation combinatoire par métaheuristiques, Editions TECHNIP, France.

[17] Ennigron M.; Ghédira K (2004); Flexible Job-Shop Scheduling with Multi-Agent System and Taboo Search,Journal Européen des Systmes Automatisés JESA, 38: 7-8.
Published
2016-01-26
How to Cite
GHARBI, Amira; BENREJEB, Mohamed; BORNE, Pierre. A Taboo Search Optimization of the Control Law of Nonlinear Systems with Bounded Uncertainties. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 11, n. 2, p. 224-232, jan. 2016. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/2010>. Date accessed: 03 july 2020. doi: https://doi.org/10.15837/ijccc.2016.2.2010.

Keywords

Attractor, aggregation technique, vector norm, optimization, Taboo search. \end{abstract}