Radio Resource Adaptive Adjustment in Future Wireless Systems Based on Application Demands

  • Emanuel Puschita Technical University of Cluj-Napoca
  • Tudor Palade Technical University of Cluj-Napoca
  • Rebeca Colda Technical University of Cluj-Napoca
  • Irina Vermesan Technical University of Cluj-Napoca
  • Ancuta Moldovan Technical University of Cluj-Napoca


In wireless communication systems the resource  anagement needs to integrate adaptive techniques to the varying network conditions, due to the eventual dramatic changes that may occur in the link quality. Therefore, it may be desirable to support adaptable resource management techniques that are able to find their decisions in the network configuration information or in the source application description. Accordingly, the paper identifies, explores and proposes adaptive techniques for resource management so as to enhance the transmission quality on wireless systems either through a feedback channel or by making use of the network virtualization concept. Setting up dependencies between the application requests and the radio channel conditions, a feedback loop adaptively configures modulation and coding schemes, calibrates multi-antenna system, controls power per beam allocation or invokes a linear precoding. Finally, when the application requests exceed the network capacity, by the network virtualization process the adaptive potential of the application parameters can be employed, either through source fragmentation or source code adaptation.

Author Biographies

Emanuel Puschita, Technical University of Cluj-Napoca
Dept. of Communications
Tudor Palade, Technical University of Cluj-Napoca
Dept. of Communications
Rebeca Colda, Technical University of Cluj-Napoca
Dept. of Communications
Irina Vermesan, Technical University of Cluj-Napoca
Dept. of Communications
Ancuta Moldovan, Technical University of Cluj-Napoca
Dept. of Communications


[1] M. Mueck, A. Piipponen, G. Dimitrakopoulos, K. Tsagkaris, et al., ETSI reconfigurable radio systems: status and future directions on software defined radio and cognitive radio standards, IEEE Communications Magazine, ISSN 0163-6804, 48(9):78-86, 2010.

[2] N. Crisan, C. L. Cremene, E.Puschita, T. Palade, Evaluation of Adaptive Radio Techniques for the under-11GHz Broadband Wireless Access, INT J COMPUT COMMUN, ISSN 1841- 9836, 3(S):232-237, 2008.

[3] M. Tran, G. Zaggoulos, A. Nix, A. Doufexi, Mobile WiMAX: Performance Analysis and Comparison with Experimental Results, IEEE 68th Vehicular Technology Conference (VTC), 1-5, 2008.

[4] Y. Hang, Z. Lin, S. Ashutosh, Power Management of MIMO Network Interfaces on Mobile Systems, IEEE Transactions on Very Large Scale Integration Systems, 20(7):1175-1186, 2012.

[5] A. Doufexi, E. Tameh, A. Nix, A. Pal, M. Beach, C. Williams, Throughput and Coverage of WLANs Employing STBC under Different Channel Conditions, 1st International Symposium on Wireless Communication Systems, Mauritius, 20-22 September 2004, 367-372, 2004.

[6] J. Salazar, I.Gomez, A. Gelonch, Adaptive Resource Management and Flexible Radios for WiMAX, Journal of Telecommunications and Information Technology, 4:101-107, 2009.

[7] WiMAX Forum, Forum Mobile System Profile Specification: Release 1.5 Common Part, Revision 0.2.1: 2009-02-02.

[8] Recommendation ITU-R M.1225, Guidelines for evaluation of radio transmission technologies for IMT-2000, 1997.

[9] Project BROADWAN - Broadband services for everyone over fixed wireless access networks, Deliverable 21. Planning guidelines for broadband access networks with case studies, May 2006.

[10] B. Baumgartner, M. Reinhardt, G. Righter, M. Bossert, Performance of Forward Error Correction for IEEE 802.16e, Proc. of the 10th International OFDM Workshop (InOWo), Hamburg, Germany, 2005.

[11] M. Tran, A. Nix, A. Doufexi, Mobile WiMAX MIMO Performance Analysis: Downlink and Uplink, IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Cannes, 15-18 September 2008, 1-5, 2008.

[12] L. Zhinin, Z. Wenjun, X. Youyun, An Improved Simulator for the Correlation-based MIMO Channel in Multiple Scattering Environments, Wireless Personal Communications, 52(4):777-788, 2009.

[13] E. Vinko,, IEEE P802.11 Wireless LANs TGn channel models, doc: IEEE 802.11- 03/940r4.

[14] I. Schumacher, K.I. Pedersen, P.E. Morgensen, From antenna spacing to theoretical capacities guidelines for simulating MIMO Systems, Proc. PIMRC Conf., 2:587-592, 2002.

[15] S. Durrani, M.E. Bailkowski, Effect of angular energy distribution of an incident signal on the spatial fading correlation of a uniform linear array, Microwaves, Radar and Wireless Communications MIKON, 2:493-496, 2004.

[16] D. Lasevla, I.Z.Kocacs, L.M. Del Apio, E. Torrecilla, Feasibility and deployment analysis of the SURFACE concept, deliverable 1.1, 2009, available at:

[17] I. Vermesan, A. Moldovan, T. Palade, R. Colda, Multi Antenna STBC Transmission Technique Evaluation under IEEE 802.11n Conditions, 15th IEEE International Conference on Microwave Techniques, COMITE 2010, 51-54, 2010.

[18] M. Vu, A. Paulraj, MIMO Wireless Linear Precoding, IEEE Signal Processing Magazine, 24(5):86-105, 2007.

[19] V. Taroch, H. Jafakhami, R. Calderbank, Space-Time Block Codes from Orthogonal Designs, IEEE Transactions on Information Theory, 45(5):1456-1467, 1999.

[20] V. Taroch, N. Seshadri, R. Calderbank, Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction, IEEE Transactions on Information Theory, 44:744-765, 1998.

[21] G.J. Foschini, Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multiple Antennas, Bell Laboratories Technical Journal, 1(2):41- 59, 1996.

[22] I.E. Telatar, Capacity of multi-antenna Gaussian channels, European Transactions on Telecommunications, 10:585-595, 1999.

[23] W. Huang, E.K. Au, V.K.N. Lau, Linear Precoding for Space-Time Coded MIMO Systems using Partial Channel State Information, IEEE International Symposium on Information Theory, 391-395, 2006.

[24] E. Puschita, T.Palade, A. Moldovan, R.Colda, I. Vermesan, An Innovative QoS Paradigm based on Cognitive In-Network Management of Resources for a Future Unified Network Architecture: I-NAME QoS Model, The Second International Conference on Advances in Future Internet AFIN 2010, ISBN 978-0-7695-4091-7, 37-43, 2010.

[25] A.G Prieto, D. Dudkowsky, C. Meirosu, C. Mingardi, G. Nunzi, M. Brunner, R. Stadler, Decentralized In-Network Management for the Future Internet, IEEE International Conference on Communications, ICC09, 1-5, 2009.
How to Cite
PUSCHITA, Emanuel et al. Radio Resource Adaptive Adjustment in Future Wireless Systems Based on Application Demands. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 8, n. 1, p. 111-126, nov. 2012. ISSN 1841-9844. Available at: <>. Date accessed: 05 july 2020. doi:


Resource management; adaptive techniques; feedback loop; network virtualization