A Data Fusion Methodology for Wireless Sensor Systems

Joy Iong-Zong Chen, Yi-Nung Chung

Abstract


An efficient DFA (data fusion algorithm) plays an important role in tracking for moving objects over WSS (wireless sensor system) deployments in order to track the objects accurately. Accuracy in object tracking is mainly dominated by the prediction for those moving targets by filtering and refining the results from wireless mobile sensors deployed in WSS environment. A DFA based on CHHN (competitive Hopfield neural network) technique for obtaining the relationship between measurements results from wireless mobile sensors and estimation of existing tracks over WSS (wireless sensor system) is proposed in this paper. Embedded within the CHNN is also a competitive learning mechanism which creatively removes the dilemma of occasional irrational solutions in traditional HNN (Hopfield neural networks). In this research, except the proposed approach is established with CHNN, the methodology of data fusion over WSS is guaranteed to converge into a stable state when performing a data association. In words, the CHNN-based DFA is combined with wireless mobile sensors in a WSS environment to demonstrate the target tracking capabilities. Computer simulation results illustrate that the new methodology of data fusion based on CHNN is not only successfully able to solve the data association problems addressed over WSS environments, but the specified simulated targets can also be tracked without large scale missing.


Keywords


CHNN (competitive Hopfield neural network), DFA (data fusion algorithm), mobile sensors, WSN (wireless sensor network)

Full Text:

PDF

References


F. Zhao, L. Guibas, Wireless Sensor Networks: An Information Processing Approach. Elsevier te. Ltd., Singapore, 2004.

M. Cetin, Lei Chen, Fisher, J. W., III, Ihler, A. T., Moses, R. L., Wainwright, M. J. Willsky, . S., Distributed Fusion in Sensor Networks. IEEE Signal Processing Magazine, vol. 23, ssue 4, pp. 42-55, 2006.

J. Miguez, A. Artes-Rodriguez, Monte Carlo Algorithms for Tracking a Maneuvering Target sing a Network of Mobile Sensors. Proc. 1st IEEE Int. Workshop Computational Advances n Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, vol. 1, pp. 89-92, 2005.

K. C. Chang, C. Y. Chong, Y. Bar-Shalom, Joint Probabilistic Data and Association Distributed ensor Networks. IEEE Transactions on Automatic Control, vol. AC-31, pp. 889- 97, 1986.
http://dx.doi.org/10.1109/TAC.1986.1104143

N. Okello, B. Ristic, Maximum Likelihood Registration for Multiple Dissimilar Sensors. EEE Transactions on Aerospace Electronic Systems, vol. 39, issue 3, pp. 1074-1083, 2003.
http://dx.doi.org/10.1109/TAES.2003.1238759

Y. Bar-Shalom, T. E. Fortmann, Tracking and Data Association. Academic Press, Inc., 989.

S.S. Blackman, Multiple Hypothesis Tracking for Multiple Target Tracking. IEEE Aerospace lectronic Systems, vol. 19, issue 1, pp. 5-18, 2004.

Y.N. Chung, J. I. -Z. Chen, Applying Both Kinematic and Attribute Information for a arget Tracking Algorithm. Journal of Control Systems and Technology, pp. 203-209, 1997.

C. Hue, Le Cadre., J. -P., P. Perez, Sequential Monte Carlo Methods for Multiple Target racking and Data Fusion. IEEE Transactions on Signal Processing, vol. 50, issue 2, pp. 09-325, 2002.

D. Sengupta, R.A. Iltis, Neural Solution to the Multitarget Tracking Data Association roblem. IEEE Aerospace Electronic Systems, vol. 25, issue 1, pp. 96-108, 1989.
http://dx.doi.org/10.1109/7.18666

L. Chin, Application of Neural Networks in Target Tracking Data Fusion. IEEE Aerospace lectronic Systems, vol. 30, issue 1, pp. 281-287, 1994.

C. Y. Chang, P. C. Chung, Medical Image Segmentation Using a Contextual-constraint ased Hopfield Neural Cube. Image and Vision Computing, pp. 669-678, 2001.
http://dx.doi.org/10.1016/S0262-8856(01)00039-7

E. Soujeri, H. Bilgekul, Hopfield Multiuser Detection of Asynchronous MC-CDMA Signals n Multipath Fading Channels. IEEE Communications Letters, vol. 6, issue 4, pp. 147-149, 002.

B. Zhou, N. K. Bose, A Comprehensive Analysis of Neural Solution to the Multitarget racking Data Association Problem. IEEE Aerospace Electronic Systems, vol. 29, issue 1, p.260-263, 1993.
http://dx.doi.org/10.1109/7.249134

X. Wang, A. Jiang, S. Wang, Mobile Agent Based Moving Target Methods in Wireless ensor Networks. Proc. IEEE Int. Symp. Commun. and Info. Tech., Beijing, China, vol. 1, p. 22-26, 2005.

Q. Liang, D. F. Yuan, Y. Wang, R. H. Zhang, A New Sensor Antenna-array Selecting ethod in Wireless Sensor Networks. In Proceeding Int. Conf. on Communications, Circuits nd Systems, Guilin, China, vol. 3, pp. 1523-1526, 2006.

S. Y. Kung, Digital Neural Networks. PTR Prentice Hall, Englewood Cliffs, New Jersey, 993.

X. Wang, S. Wang, D. Bi, Dynamic Sensor Node Selection Strategy for Wireless Sensor etworks. In Proceeding IEEE Int. Symp. Commun. and Info. Tech., Darling Harbour, ydney, Australia, vol. 1, pp. 1137-1142, 2007.

T. Semertzidis, K. Dimitropoulos, A. Koutsia, N. Grammalidis, Video Sensor Network for eal-time Traffic Monitoring and Surveillance. IET Intelligent Transport Systems, vol. 4, ssue 2, pp. 103-112, 2010.

Y. -S. Yen, S. Hong, R. -S. Chang, H. -C. Chao, Controlled Deployments for Wireless Sensor etworks. IET Communications, vol. 3, Issue 5, pp. 820-829, 2009.
http://dx.doi.org/10.1049/iet-com.2008.0262

Y. Liu, N. Xiong, Y. Zhao, A.V. Vasilakos, J. Gao, Y. Jia, Multi-layer Clustering Routing lgorithm for Wireless Vehicular Sensor Networks. IET Communications, vol. 4, Issue 7, p. 810-816, 2010.
http://dx.doi.org/10.1049/iet-com.2009.0164

L. Shi, A. Capponi, K. H. Johansson, R. M. Murray, Resource Optimization in a Wireless ensor Network with Guaranteed Estimator Performance. IET Control Theory Applications, ol. 4, Issue 5, pp. 710-723, 2010.

M. S. Grewal, A. P. Andrew, Kalman Filtering, Theory and Practice-using MATLAB, 2nd d. John Wiley & Sons, Inc., New York, 2001

A. Papoulis, S. U. Pillai, Probability, Random Variables, and Stochastic Processes. 4th ed. cGraw-Hill, Comp., Inc., New York, 2002

X. Wang, D. Wang, Y. Wang, Agrawal, D. P., A. Mishra, On Data Fusion and Lifetime onstrains in Wireless Sensor Networks. In Proceeding IEEE Int. Communication. Conf., lasgow, Scotland, vol. 9, pp. 3942-3947, 2007.




DOI: https://doi.org/10.15837/ijccc.2012.1.1421



Copyright (c) 2017 Joy Iong-Zong Chen, Yi-Nung Chung

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]


INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2018: IF=1.585..

IJCCC is indexed in Scopus from 2008 (CiteScore2018 = 1.56):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.

 

 Impact Factor in JCR2018 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.585 (Q3). Scopus: CiteScore2018=1.56 (Q2); Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.