Fuzzy Control Design for a Class of Nonlinear Network Control System: Helicopter Case Study

  • P. Quiñones-Reyes Instituto Tecnológico de Jiquilpan Carr. Nac., S/N Km. 202, CP 59510, Jiquilpan, Michoacán, México.
  • J. Ortega-Arjona Universidad Nacional Autónoma de México Apdo. Postal 20-726, Admón. 20, Del. A. Obregón, México D. F., CP. 01000
  • E. Méndez-Monroy Universidad Nacional Autónoma de México Apdo. Postal 20-726, Admón. 20, Del. A. Obregón, México D. F., CP. 01000
  • H. Benítez-Pérez Universidad Nacional Autónoma de México Apdo. Postal 20-726, Admón. 20, Del. A. Obregón, México D. F., CP. 01000.
  • A. Durán-Chavesti Universidad Nacional Autónoma de México Apdo. Postal 20-726, Admón. 20, Del. A. Obregón, México D. F., CP. 01000

Abstract

This paper presents a fuzzy control approach to a helicopter MIMO nonlinear system, implemented on a Networked Control System, as case study. For this, a hardware-in-the-Loop implementation is developed using several multi-channel A/D Cards, integrated to a computer network system. Variant time delays are considered over Ethernet and CANBUS networks. Fuzzy logic is used to deal with the complexity of the integrated computer network as well as with the dynamics of the system. Two fuzzy logic control systems are coupled for both signals of the helicopter case study: yaw and pitch. Both these tend to concentrate around desired references, considering variant time delays.

References

[1] J. Abonyi, Fuzzy Model Identification for Control, Birkh�user, 2003
http://dx.doi.org/10.1007/978-1-4612-0027-7

[2] L. Almeida, P. Pedreiras and J. A.-Fonseca, The FTT-CAN Protocol: Why and How, IEEE ransactions on Industrial Electronics, 49(6):1189-1201, 2002

[3] H. Benítez-Pérez and F. García-Nocetti, Switching Fuzzy Logic Control for a Reconfigurable ystem Considering Communication Time Delays, Proceedings, CDROM, European Control onference, ECC 03 September, 2003

[4] H. Benítez-Pérez and F. García-Nocetti, Reconfigurable Distributed Control, Springer Verlag, 005

[5] H. Benítez-Pérez, Real-Time Distributed Control A Diverse Approach for Nonlinear Problem, onlinear Analysis: Hybrid Systems and Applications, doi:10.1016/j.nahs.2006.06.004, ol 2/2 pp 474-490, Junio 2008
http://dx.doi.org/10.1016/j.nahs.2006.06.004

[6] H. Benítez-Pérez, J. S.-Gonzalez, F. C.-Flores and F. García-Nocetti, Fault Classification for Class of Time Variable Systems by using a group of three ART2 Networks, International ournal Control and Intelligent Systems, DOI: 10.2316/Journal.201.2008.1.201-1820, Vol 36, o. 1, 2008
http://dx.doi.org/10.2316/Journal.201.2008.1.201-1820

[7] M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis and Fault Tolerant Control, pringer, 2003

[8] A. Cervin, D. Henriksson, B. Lincoln, J. Eker and K. Arzén, How Does Control Timing ffect Performance?, IEEE Control Systems Magazine, Vol. 23, pp. 16-30, 2003
http://dx.doi.org/10.1109/MCS.2003.1200240

[9] T. Frank, K. F.-Kraiss and T. Kuhlen, Comparative Analysis of Fuzzy ART and ART-2A etwork Clustering Performance, IEEE Transactions on Neural Networks, Vol. 9, No. 3, ay 1998

[10] D. Hanselman and B. littlefield, Mastering MATLAB, Prentice Hall, 2002

[11] R. I.-Zamanabadi and M. Blanke, A Ship Propulsion System as a Benchmark for Fault- olerant Control, Control Engineering Practice, Vol. 7, pp. 227-239, 1999
http://dx.doi.org/10.1016/S0967-0661(98)00149-X

[12] J. Jiang, and Q. Zhao, Reconfigurable Control Based on Imprecise Fault Identification, roocedings of the American Control Conference, IEEE, pp. 114-118, San Diego, June, 1999

[13] F. Lian, J. Moyne and D. Tilbury, Network Design Consideration for Distributed Control ystems, IEEE Transactions on Control Systems Technology, Vol. 10, No. 2, pp. 297-307, arch 2002

[14] L. Liu, Real-time Systems, Wiley, 2002

[15] Menendez L. de C. A. and H. Benítez-Pérez, Node Availability for Distributed Systems onsidering processor and RAM utilization Based upon a Local Optimization Procedure, NT J COMPUT COMMUN, ISSN 1841-9836, 5(3):336-350, 2010

[16] J. Nilsson, Real-Time Control with Delays, PhD. Thesis, Department of Automatic Control, und Institute of Technology, Sweden, 1998.

[17] H. Thompson, Wireless and Internet Communications Technologies for monitoring and Control, ontrol Engineering Practice, vol. 12, pp. 781-791, 2004

[18] D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to Fuzzy Logic Control, pringer-Verlag, 1994

[19] L. Zhang, Y. Shi, T. Chen and B. Huang, A New Method for Stabilization of Networked ontrol Systems with Random Delays, American Control Conference, pp. 633-637, 2005

[20] D. Kim, D. Choi and P. Mohapatra, Real-Time Scheduling method for Networked Discrete ontrol Systems, Control Engineering Practice, Vol 17, pp: 564-570, 2009
http://dx.doi.org/10.1016/j.conengprac.2008.10.006

[21] http://www.quanser.com/english/html/solutions/s_soln_software_wincon.html

[22] Zmaranda D., Gabor G., Popescu D.E., Vancea C., Vancea F., Using Fixed Priority Preemptive cheduling in Real-Time Systems, INT J COMPUT COMMUN, ISSN 1841-9836, (1):187-195, 2011

[23] Dai L., Chang Y., Shen Z.,An Optimal Task Scheduling Algorithm in Wireless Sensor Networks, NT J COMPUT COMMUN, ISSN 1841-9836, 6(1):101-112, 2011

[24] Negoita C.V., Remembering the Beginnings, INT J COMPUT COMMUN, ISSN 1841-9836, (3):458-461, 2011

[25] Nyirenda C.N., Dong F., Hirota K., Distance Based Triggering and Dynamic Sampling Rate stimation for Fuzzy Systems in Communication Networks, INT J COMPUT COMMUN, SSN 1841-9836, 6(3):462-472, 2011
Published
2014-09-20
How to Cite
QUIÑONES-REYES, P. et al. Fuzzy Control Design for a Class of Nonlinear Network Control System: Helicopter Case Study. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, [S.l.], v. 7, n. 2, p. 365-376, sep. 2014. ISSN 1841-9844. Available at: <http://univagora.ro/jour/index.php/ijccc/article/view/1416>. Date accessed: 24 nov. 2020. doi: https://doi.org/10.15837/ijccc.2012.2.1416.

Keywords

fuzzy control, networked control systems