Brain Tumor Segmentation on MRI Brain Images with Fuzzy Clustering and GVF Snake Model

Arthanari Rajendran, Raghavan Dhanasekaran

Abstract


Deformable or snake models are extensively used for medical image segmentation, particularly to locate tumor boundaries in brain tumor MRI images. Problems associated with initialization and poor convergence to boundary concavities, however, has limited their usefulness. As result of that they tend to be attracted towards wrong image features. In this paper, we propose a method that combine region based fuzzy clustering called Enhanced Possibilistic Fuzzy C-Means (EPFCM) and Gradient vector flow (GVF) snake model for segmenting tumor region on MRI images. Region based fuzzy clustering is used for initial segmentation of tumor then result of this is used to provide initial contour for GVF snake model, which then determines the final contour for exact tumor boundary for final segmentation. The evaluation result with tumor MRI images shows that our method is more accurate and robust for brain tumor segmentation.


Keywords


Deformable model; FCM; Segmentation; MRI image; GVF

Full Text:

PDF

References


M. Prastawa, E. Bullitt, S. Ho, G. Gerig, A brain tumor segmentation framework based on outlier detection, Medical Image Analysis, 2004, 18 (3), 217-231.

J.J. Corso, E. Sharon, A. Yuille, Multilevel segmentation and integrated Bayesian model classification with an application to brain tumor segmentation, in: MICCAI2006, Copenhagen, Denmark, Lecture Notes in Computer Science, October 2006,Vol. 4191, Springer, Berlin, pp. 790-798.

M.B. Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J. Villemure, J.-P. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Transactions on Medical Imaging, 2004,23 (10), 1301-1313.
http://dx.doi.org/10.1109/TMI.2004.834618

J.-P. Thirion, Image matching as a diffusion process: an analogy with Maxwells demons, Medical Image Analysis, 1998,2 (3), 243-260.
http://dx.doi.org/10.1016/S1361-8415(98)80022-4

G. Moonis, J. Liu, J.K. Udupa, D.B. Hackney, Estimation of tumor volume with fuzzyconnectedness segmentation of MR images, American Journal of Neuroradiology, 2002,23,352-363.

A.S. Capelle, O. Colot, C. Fernandez-Maloigne, Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information, Information Fusion, 2004, 5, 203-216.
http://dx.doi.org/10.1016/j.inffus.2003.10.001

W. Dou, S. Ruan, Y. Chen, D. Bloyet, J.M. Constans, A framework of fuzzy information fusion for segmentation of brain tumor tissues on MR images, Image and Vision Computing, 2007, 25,164-171.
http://dx.doi.org/10.1016/j.imavis.2006.01.025

M. Schmidt, I. Levner, R. Greiner, A. Murtha, A. Bistritz, Segmenting brain tumors using alignment-based features, in: IEEE Internat. Conf. on Machine learning and Applications, 2005, pp. 215-220.

J. Zhou, K.L. Chan, V.F.H Chong, S.M. Krishnan, Extraction of brain tumor fromMR images using one-class support vector machine, in: IEEE Conf. on Engineering in Medicine and Biology, 2005, pp. 6411-6414.

A. Lefohn, J. Cates, R. Whitaker, Interactive, GPU-based level sets for 3D brain tumor segmentation, Technical Report, University of Utah, April 2003.

Y. Zhu, H. Yang, Computerized tumor boundary detection using a Hopfield neural network, IEEE Transactions on Medical Imaging, 1997, 16 (1), 55-67.
http://dx.doi.org/10.1109/42.552055

S. Ho, E. Bullitt, G. Gerig, Level set evolution with region competition: automatic 3D segmentation of brain tumors, in: ICPR, Quebec, August 2002, pp. 532-535.

K. Xie, J. Yang, Z.G. Zhang, Y.M. Zhu, Semi-automated brain tumor and edema segmentation using MRI, European Journal of Radiology, 2005, 56, 12-19.
http://dx.doi.org/10.1016/j.ejrad.2005.03.028

Wang Guoqiang, Wang Dongxue, Segmentation of Brain MRI Image with GVF Snake, Model,in: 2010 First International Conference on Pervasive Computing, Signal Processing and Applications,2010,pp.711-714.
http://dx.doi.org/10.1109/PCSPA.2010.177

Pal, N. R., Pal, K., Keller, J. M., and Bezdek, J. C.A, Possibilistic fuzzy c-means clustering algorithm, IEEE Transactions on Fuzzy Systems, 2005, 13(4), pp.517-530.
http://dx.doi.org/10.1109/TFUZZ.2004.840099

Buades A,Coll B,Morel J-M. "A non-local algorithm for image denoising",In CVPR 2005:60-5.

Ma, L. and Staunton, R. C., A modified fuzzy c-means image segmentation algorithm for use with uneven illumination patterns, Pattern Recognition, 2007, 40(11), pp.3005-3011.
http://dx.doi.org/10.1016/j.patcog.2007.02.005

C. Xu and J.L. Prince, Snakes, shapes, and gradient vector flow, IEEE Trans. on Image Processing, March 1998,vol. 7, pp. 359-369.
http://dx.doi.org/10.1109/83.661186

Bingrong Wu, Me Xie, Guo Li, Jingjing Gao, Medical Image Segmentation Based on GVF Snake Model IEEE Conference on Second International Intelligent Computation Technology and Automation (ICICTA 09), IEEE Press, 2009, vol. 1,Oct., pp. 637 - 640.

Zijdenbos, A. P., Dawant, B. M., Margolin, R. A., and Palmer, A. C. Morphometric analysis of white matter lesions in MR images: Method and validation, IEEE Transactions on Medical Imaging, 1994;13(4):716-724.
http://dx.doi.org/10.1109/42.363096




DOI: https://doi.org/10.15837/ijccc.2012.3.1393



Copyright (c) 2017 Arthanari Rajendran, Raghavan Dhanasekaran

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC-BY-NC  License for Website User

Articles published in IJCCC user license are protected by copyright.

Users can access, download, copy, translate the IJCCC articles for non-commercial purposes provided that users, but cannot redistribute, display or adapt:

  • Cite the article using an appropriate bibliographic citation: author(s), article title, journal, volume, issue, page numbers, year of publication, DOI, and the link to the definitive published version on IJCCC website;
  • Maintain the integrity of the IJCCC article;
  • Retain the copyright notices and links to these terms and conditions so it is clear to other users what can and what cannot be done with the  article;
  • Ensure that, for any content in the IJCCC article that is identified as belonging to a third party, any re-use complies with the copyright policies of that third party;
  • Any translations must prominently display the statement: "This is an unofficial translation of an article that appeared in IJCCC. Agora University  has not endorsed this translation."

This is a non commercial license where the use of published articles for commercial purposes is forbiden. 

Commercial purposes include: 

  • Copying or downloading IJCCC articles, or linking to such postings, for further redistribution, sale or licensing, for a fee;
  • Copying, downloading or posting by a site or service that incorporates advertising with such content;
  • The inclusion or incorporation of article content in other works or services (other than normal quotations with an appropriate citation) that is then available for sale or licensing, for a fee;
  • Use of IJCCC articles or article content (other than normal quotations with appropriate citation) by for-profit organizations for promotional purposes, whether for a fee or otherwise;
  • Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or other form of commercial exploitation;

    The licensor cannot revoke these freedoms as long as you follow the license terms.

[End of CC-BY-NC  License for Website User]


INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL (IJCCC), With Emphasis on the Integration of Three Technologies (C & C & C),  ISSN 1841-9836.

IJCCC was founded in 2006,  at Agora University, by  Ioan DZITAC (Editor-in-Chief),  Florin Gheorghe FILIP (Editor-in-Chief), and  Misu-Jan MANOLESCU (Managing Editor).

Ethics: This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

Ioan  DZITAC (Editor-in-Chief) at COPE European Seminar, Bruxelles, 2015:

IJCCC is covered/indexed/abstracted in Science Citation Index Expanded (since vol.1(S),  2006); JCR2016: IF=1.374. .

IJCCC is indexed in Scopus from 2008 (CiteScore 2017 = 1.04; SNIP2017 = 0.616, SJR2017 =0.326):

Nomination by Elsevier for Journal Excellence Award Romania 2015 (SNIP2014 = 1.029): Elsevier/ Scopus

IJCCC was nominated by Elsevier for Journal Excellence Award - "Scopus Awards Romania 2015" (SNIP2014 = 1.029).

IJCCC is in Top 3 of 157 Romanian journals indexed by Scopus (in all fields) and No.1 in Computer Science field by Elsevier/ Scopus.

 

 Impact Factor in JCR2017 (Clarivate Analytics/SCI Expanded/ISI Web of Science): IF=1.29 (Q3). Scopus: CiteScore2017=1.04 (Q2); Editors-in-Chief: Ioan DZITAC & Florin Gheorghe FILIP.