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Abstract: This paper analyzes the end-to-end delay of EtherCAT-based control
processes that use the events of message frames and global clock for synchronized
operation. With the end-to-end delay defined as the time interval between the start
of a process cycle and the actual input or output, we develop a holistic delay model
for control processes with EtherCAT, by taking into account the time for in-controller
processing, message delivery, and slave-local handling. Based on the measurements
from a real EtherCAT control system, we discuss the average and deviation of the pro-
cess delay as we vary the number of slaves and process cycle time. The experiment
results show that the output delays are mainly increased by the average controller
delay, whereas the input delays are more affected by the deviation rather than the
average of the controller delay. Our in-depth analysis on the controller reveals that
the DMA (Direct Memory Access) overhead chiefly enlarges the controller delay for
increasing number of slaves, while task release jitter is the main cause of the in-
creased delay for longer cycle time. The presented delay model and evaluation results
can be essentially used for the design of EtherCAT-based automation that requires
highly synchronized operations, such as for coordinated motion and high-precision
data sensing.
Keywords: real-time Ethernet, end-to-end delay, synchronized processes, automa-
tion system.

1 Introduction

Presently, automated control systems are experiencing a steady but fundamental change, i.e.,
the use of industrial Ethernet as a replacement for conventional fieldbuses [1, 2]. EtherCAT, in
particular, is one of the industrial Ethernet standards (IEC 61784 and 61158-2), which is gaining
increasing acceptance in precision automation [3–7]. It offers numerous attractive features such as
short cycle time as low as dozens of microseconds [6], globally synchronized clock with deviation
of the sub-microsecond range [8], and compatibility with TCP/IP. Because of these benefits,
EtherCAT is currently being applied in various automation fields including factory automation,
robotics, and production machinery [9–11].

An automation system typically requires highly synchronized operations of its components for
coordinated actuation and sensing. For example, an industrial robot should be able to actuate
its constituent motors in a synchronized manner so that the consequential motion accurately
follows the planned trajectory. High-precision distributed measurement is another example,
where synchronous operation is important for synchronized sensing and data freshness [12].

With an Ethernet-based control system, the design of such synchronized operations relies
on a thorough analysis of the networked process delay, which includes the time for in-controller
processing, message delivery, and local handling by each slave, i.e., the controlled device. Thus
far, however, there have been few studies that have analyzed the end-to-end delay of EtherCAT
automation systems. Although some recent works have addressed the performance of EtherCAT-
based automation, they remain incomplete in that they either lack any consideration of the actual
automation workload [13] or only deal with the network-level performance [5–7].
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This paper evaluates the performance of EtherCAT-based synchronized processes in terms of
the end-to-end delay. In EtherCAT, synchronized control schemes can be realized using events
from the EtherCAT frames and synchronized clock. These two types of events relate directly to
the precision of modern networked control processes: at each slave, the event of a frame reception
begins a new cycle of computation, while the event from the synchronized clock can be utilized
to latch input data and/or actuate the device in a globally synchronized manner. We formulate
the end-to-end delay of the synchronized control schemes and investigate their performance
characteristics in a comprehensive way. Aiming for providing an in-depth and practical insight,
the performance evaluation has been conducted using a prototype EtherCAT controller that was
constructed from open source software. Based on the measurement results using the controller,
we discuss the delay performance as we vary the number of slaves and process cycle time.

The contributions of our work are two-folded. First, we present a delay analysis of the
EtherCAT synchronized processes. Using a real automation testbed that operates a number of
commercial motor drives, we evaluate the performance of EtherCAT control systems in terms of
the average and deviation of the end-to-end process delay. To the best of our knowledge, our
study is the first to analyze the end-to-end delay of EtherCAT control processes in a holistic way,
considering not only the control network but also the actual in-controller automation workload.
The experiment results confirm the importance of our in-depth analysis of the controller delay:
the average end-to-end delays of output processes are mainly increased by the average controller
delay while the input processes are directly affected by the deviation rather than the average
of the controller delay. Second, we show the feasibility of using open source solutions to build
up an automation controller. On a bare PC, we set up Xenomai-patched Linux [14] and IgH
EtherCAT stack [15]. We used Beremiz [16] to generate automation workload, and we extended
its communication interfaces so that it supports EtherCAT network. The experimental controller
could successfully operate tens of drives in position or velocity mode with a cycle time of 0.5 ms.
The largest actuation deviation among the drives was analyzed to be around 30 µs and 0.1 µs,
respectively, in the frame-driven and clock-driven synchronization schemes.

The remainder of this paper is organized as follows. In Section 2, we review the background
for EtherCAT-based synchronized processes. In Section 3, we present our end-to-end delay
analysis and in Section 4 we describe the evaluation results. Section 5 concludes the paper.

2 Background

2.1 EtherCAT and Synchronized Processes

Among the emerging real-time Ethernet profiles [1], we chose EtherCAT for our analysis
because it has desirable features for realizing highly synchronized operations.

First, EtherCAT supports high-speed deterministic communication. Figure 1(a) shows a
typical configuration of EtherCAT network, which is in the form of a line topology. Along
the forwarding path, every slave in an EtherCAT network relays message frames between the
input and output ports on-the-fly using switch hardware. When the message frame is relayed
by each slave, the output or input process data in the frame is written to, or updated from, the
corresponding part of the buffer in the slave. Once an EtherCAT frame arrives at the end of the
network, it returns to the controller. EtherCAT allows only peer-to-peer connections between
any two consecutive slaves, thereby eliminating the possibility of indeterminism arising from
multi-party simultaneous access to the medium. The design of a synchronized process can be
greatly benefited from the almost deterministic message delivery time.

Second, EtherCAT provides efficient clock synchronization, which is known as the Distributed
Clock (DC) mechanism [8]. Basically, the DC-enabled slave closest to the EtherCAT controller
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Figure 1: EtherCAT-based control system.

acts as the timing reference for the entire EtherCAT network. In the setup phase, the controller
collects local clock values from each DC-enabled slave. The controller calculates the offsets
between the reference and local clock values, and then it writes the offsets to the slaves, with which
they can compute the global time based on their local clocks. After this is done, the controller
periodically distributes the value of the reference clock to all the slaves for the compensation of
clock skew that is caused by local clock drift. The DC mechanism is rather simple, but it can
accurately synchronize the clocks of distributed slaves with a skew of usually less than 1 µs.

EtherCAT provides two types of synchronized events to trigger a local task on each slave, i.e.,
the frame and clock events (see Fig. 1(b)). The cycle time in this paper is defined as the period
with which the controller repeats the automation process. For each process cycle, a slave task
can be designed to start its execution immediately after the arrival of an EtherCAT frame that
is cyclically generated by the controller. However, such frame-driven cycle may have a relatively
large deviation, e.g., a few to dozens of microseconds, due to the variable processing delays on
the controller and the intermediate slave devices. Alternatively, a slave task can be invoked by
the autonomous interrupt that is generated synchronous to the global clock, in which case the
deviation can be reduced by up to a few nanoseconds.

2.2 IEC 61131-3 and Open Source Automation

Currently, the control logic of many industrial automation processes is usually implemented
using PLC (Programmable Logic Controller). Owing to the proliferation of PLCs in various in-
dustries, it is becoming very important for programmers and field engineers with different domain
backgrounds and skills to easily handle PLC-based systems. However, the lack of a consistent
approach to PLC programming makes it difficult to integrate devices from different vendors
to build a large and complex automation system. In order to solve this problem, the Interna-
tional Electrotechnical Commission (IEC) introduced IEC 61131-3, a standard for programming
industrial PLC systems [17].

As IEC 61131-3 is gaining worldwide acceptance by the industry, there have been efforts
in the open source community to provide an IEC 61131-3 compliant Integrated Development
Environment (IDE). Beremiz [16] is a representative IDE, which is used and distributed freely
under the GNU license. Beremiz has three major components: PLCOpen editor, MatIEC back-
end compiler, and plugin extensions. The PLCOpen editor lets users write PLC programs using
the languages defined in the IEC 61131-3 standard. The MatIEC compiler translates the textual
form of automation programs into corresponding ANSI C codes.

The most attractive feature of Beremiz is the plugin extension. The plugin structure allows
adding new functions to the IDE simply with the implementation of the corresponding class
definitions. Because of its extensibility and open source policy, Beremiz has been utilized in
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many studies of automation systems [18–20]. For the same reason, our prototype controller
employed Beremiz, which was extended to include the EtherCAT plugin.

2.3 Related Work

There have been a few studies on the evaluation of EtherCAT networks. Early works [5, 6]
formulated the end-to-end delay of the EtherCAT network and analyzed the achievable minimum
cycle time according to the slave number and packet sizes. On the basis of a theoretical perfor-
mance model, Seno et al. presented the simulation model and the performance results in terms
of two important performance indicators, i.e., minimum cycle time and jitter [7, 21]. Robert et
al. also presented an in-depth analysis of minimum cycle time for Ethernet-based real-time pro-
tocols [22]. Although the previous studies provided the analysis models for analyzing important
performance indicators, they did not address the device-level delay factors, only dealing with the
network transmission times.

Recent studies have started to address the performance of automation controller or slave
devices for networked control systems. Cereia et al. evaluated the performance of a Linux-based
EtherCAT controller in terms of the cycle accuracy of periodic control tasks [13]. Kim et al.
presented a statistical delay analysis of EtherCAT motor drives [4]. These studies, however, have
limitations because they either lack any consideration of the actual workload [13] or ignore the
controller latency [4]. Precise clock synchronization among devices is also crucial for coordinated
actuation and sensing. A recent study by Cena et al. evaluated the performance of the DC
mechanism using extensive measurements [8, 23].

3 EtherCAT Control Processes and Delay Analysis

In this section, we describe the EtherCAT control schemes for synchronized processes [24],
and formulate their end-to-end delays. Aiming for an in-depth analysis, we explain the design of
an open source EtherCAT controller, and present the delay model for the in-controller processing.

3.1 End-to-end Delay Model of Synchronized Processes

Although EtherCAT allows other topologies such as star and tree, we assume the line topol-
ogy. It is because the line topology or daisy chain is the most preferred in industries, and our
analysis can be easily extended to other types of topologies if a proper model for the frame
delivery is given.

Figure 2(a) shows the frame-driven output (FO) scheme that uses the frame event only.
We define the end-to-end delay for an output process as the time taken from the start of a
process cycle to the corresponding output. Let DFO(k) denote the end-to-end delay on slave
k (1 ≤ k ≤ N) in the FO scheme where k means that the slave is k-th nearest to the controller.
Table 1 summarizes the notations used in this paper. Assuming homogeneous slaves, we can
express DFO(k) as

DFO(k) = Dcon + k ·Drelay +Dslv_out, (1)

where Dcon, Drelay, and Dslv_out refer to the respective delays for in-controller processing, per-
slave message relay, and slave-local output handling. The Dslv_out is defined as the time taken
to compute the output signal, which is usually a constant value given by the slave device vendor.
Note that Drelay includes the propagation time on the link between consecutive nodes (controller
or slave) as well as the link-level handling time to relay frames.

In the frame-driven input (FI) scheme shown in Fig. 2(b), the frame event triggers the slave
task that latches an input data and copies it to the memory in the EtherCAT switch hardware.
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The slave-local input delay, Dslv_in specifies the time required for the latch and copy operation.
The input data is conveyed ultimately to the automation controller by the subsequent EtherCAT
frame. The slave may allow the controller to adjust the shift-time, Tshift, by which it delays the
input latch to improve the freshness of the sensed data. In the input process, we define the
end-to-end delay as the time interval between the time when the input is latched and the time
when the frame that contains the input data returns to the controller. The end-to-end delay in
the FI configuration is then computed as

DFI(k) = Tcycle − (Dcon + k ·Drelay + Tshift) +Dcon +N ·Drelay +Dreturn, (2)

where Tcycle and Dreturn refer to the process cycle time and frame return delay, respectively. In
order to ensure that the input data is ready by the arrival of the next frame, it is required that

∀k,Dmax
con + k ·Dmax

relay + Tshift +Dmax
slv_in ≤ Tcycle +Dmin

con + k ·Dmin
relay. (3)

Therefore, Tshift should be determined such that

Tshift ≤ Tcycle − (Dmax
con −Dmin

con )−N · (Dmax
relay −Dmin

relay)−Dmax
slv_in. (4)

Note that, hereinafter, Xavg, Xmin, and Xmax represent the average, minimum, and maximum
value of variable X, respectively (e.g., Dmax

con means the maximum of Dcon).
In order to achieve a higher degree of synchronization, the clock events should be used. As

shown in Fig. 3(a), the clock-driven output (CO) scheme uses the clock event to synchronously
actuate the output after the computation has been completed. If we denote the delay of the
global clock event by Dclock, the end-to-end delay in the CO scheme becomes

DCO(k) = DCO = Dclock, (5)

where Dclock requires that

Dmin
clock ≥ Dmax

con +N ·Dmax
relay +Dmax

slv_out. (6)
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Table 1: Notations.
Notation Description
N Number of slaves.
DFO(k) End-to-end delay at slave k (1 ≤ k ≤ N) in the frame-driven output scheme.
DFI(k) End-to-end delay at slave k in the frame-driven input scheme.
DCO End-to-end delay in the clock-driven output scheme.
DCI End-to-end delay in the clock-driven input scheme.
Dcon In-controller processing time. The delay from the start of a process cycle to the release of

EtherCAT frames.
Drelay Per-node message relay time. It includes the time for frame relay by a slave and inter-node

frame propagation.
Dslv_out Slave output delay. The time taken to compute the output signal.
Dslv_in Slave input delay. The time required for latching the input data and making it ready to

be transferred.
Dreturn Frame return delay. The time taken for a frame to return from the N -th slave to the

controller.
Dclock Global clock delay, the time interval from the start of a process cycle to the generation of

the clock event.
Dcon_sw In-controller processing time to packetize the control data.
Dcon_dma DMA delay to copy data from the EtherCAT driver to the FIFO in the network interface.
Tcycle Process cycle time - constant.
Tshift Shift time by which the slave delays the input latch in order to improve the data freshness

- constant.
Jcon_task Release jitter of control task.
Xavg,Xmin, Xmax Average, minimum, and maximum value of variable X: e.g., Dmax

con means the maximum
of Dcon.

The clock-driven input (CI) configuration in Fig. 3(b) uses the clock event to synchronize the
input latch. The end-to-end delay is expressed as

DCI = Tcycle − (Dclock + Tshift) +Dcon +N ·Drelay +Dreturn, (7)

where Dclock and Tshift should be set such that

Dmax
clock + Tshift +Dmax

slv_in ≤ Tcycle +Dmin
con +Dmin

relay. (8)

Note that the end-to-end delays in the clock-driven processes are independent of the slave position
in the network.

3.2 Controller Delay Analysis

For our study, we constructed an EtherCAT controller using open source software. Our
controller design uses Xenomai-patched Linux, IgH EtherCAT protocol stack, and Beremiz as
the key software components. This facilitates a highly synchronized control process, whereby the
Xenomai kernel significantly reduces the deviation of controller delay, while EtherCAT enhances
the predictability of the message and clock events through its almost deterministic message
relaying and precisely synchronized clock.

In Beremiz, we implemented the EtherCAT plugin and integrated the EtherCAT stack via
the plugin interface. The plugin is mainly composed of two types of classes, each representing
the profiles of the controller and slave devices. We also implemented a C wrapper API to the
EtherCAT stack. The class definitions together with the EtherCAT API are used by the IEC
compiler for the generation of runtime codes. When a new program has been configured to use
EtherCAT, the plugin support module imports information on the slave profile and the EtherCAT
API from the plugin definition.

The constructed build procedure facilitates the development of EtherCAT automation pro-
grams. During the build procedure, illustrated in Fig. 4, PLC codes are translated into C codes
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by the IEC compiler, and after being compiled and linked with target-specific stub modules, it
is finally converted into an executable runtime. The stubs have interfaces to the time and task
management functions of the target operating system, i.e., Xenomai Linux in our case. This build
procedure may seem to be complicated, but most of the build steps are performed automatically
and thus transparently to users.

In order to model the in-controller delay, we investigate the behavior of the automation
runtime. Figure 5 shows the sequence diagram of the control task that executes the automation
process. An automation program is typically realized as a periodic control task that repeats
reading and writing variables in the slaves. The input and output variables of the task are
mapped from the PDOs (Process Data Objects) that are defined in the slave profiles. For each
process cycle, the task executes a sequence of transmission of output data, reception of input
data, and computation. At the beginning of the cycle, the control task writes output data into
the EtherCAT kernel module via the Xenomai interface for real-time I/O, called RTDM (Real-
Time Driver Model). In turn, the EtherCAT module packetizes the control data into EtherCAT
telegrams and copies them to the buffer in the EtherCAT NIC (Network Interface Card) driver.
Finally, the NIC driver encapsulates the telegrams into Ethernet frames and copies them to the
transmission FIFO in the NIC.
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From the execution flow for frame transmission, we can define the in-controller processing
delay Dcon as the sum of Jcon_task, Dcon_sw, and Dcon_dma. The Jcon_task, Dcon_sw, and
Dcon_dma, respectively, refer to the release jitter of the control task, the time taken for copying
the data from the user space to the device driver buffer, and the time for sending out EtherCAT
frames through the NIC via DMA (Direct Memory Access). Note that Dcon_sw includes the
packetization and queuing overheads as well.

4 Performance Results

For the experiments, we set up an EtherCAT automation system with our open source con-
troller and collected the time taken for the components of the end-to-end delay. Based on the
measurements, we discuss the characteristics of the EtherCAT process delays.

Figure 6: Experimental automation system.

Item Description
Controller
CPU Intel Core 2 Duo E4500 running at 2.2

GHz (1 Core disabled)
Memory 3 GB DDR2 SDRAM
OS Linux 2.6.37 with Xenomai 2.6.0
Network Realtek RTL 8139D 100 Mbps Ethernet
Auto. S/W Beremiz 1.0.3 with IgH EtherCAT

Master 1.5.0
Slaves
Product Sanyo Denki AC Servo Drive
PDO 64 bytes for each slave

(RxPDO 34 bytes, TxPDO 30 bytes)

Table 2: Specification of automation system.

4.1 Measurement of Delay Components

Table 2 summarizes the specification of our experiment system. The controller was connected
to a group of commercial EtherCAT servo drives [25], each of which was configured to use an
identical PDO set for communication (See Fig. 6). This set was 64 bytes in size and included all
the necessary PDOs to command a drive in cyclic synchronous position or velocity mode [26].
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Table 3: Measurement results for the controller delay.
Tcycle 4 ms 2 ms 1 ms 0.5 ms
N 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Dcon (µs)
avg 33.1 40.4 53.3 80.9 134.1 24.2 32.0 45.3 72.3 127.0 20.1 27.1 40.2 67.5 121.9 17.8 24.4 38.0 65.3 119.8
st.d 0.7 0.7 0.8 1.0 1.3 0.6 0.6 0.7 0.9 1.0 0.8 1.1 1.1 1.1 1.2 0.6 0.9 0.9 0.9 0.8
min 23.9 32.8 44.2 69.3 118.7 15.2 15.5 36.0 59.0 114.5 11.0 12.8 30.5 56.5 109.5 8.8 15.0 30.0 55.0 107.1
max 53.8 57.3 71.9 101.9 155.3 41.5 50.0 62.3 89.6 145.3 32.8 43.7 55.2 82.1 135.6 30.3 37.8 49.9 77.0 131.2

Low 95% 33.6 40.8 53.8 81.5 134.7 24.4 32.2 45.5 72.7 127.5 20.9 28.3 41.3 68.7 123.2 18.9 26.1 39.6 66.9 120.7
Low 99% 36.6 43.5 56.8 85.1 140.7 26.3 34.1 47.3 76.0 132.8 21.3 28.9 42.0 70.2 125.0 19.1 26.2 39.7 67.2 121.8
Jcon_task (µs)

avg 16.4 16.5 16.1 16.4 14.9 7.5 8.1 8.0 7.7 8.0 3.9 4.0 3.8 3.8 3.8 2.0 1.9 2.0 2.0 2.0
st.d 0.5 0.6 0.6 0.8 0.9 0.4 0.5 0.5 0.6 0.7 0.3 0.4 0.4 0.5 0.6 0.3 0.3 0.3 0.5 0.6
min 6.6 6.7 6.7 2.7 -1.0 -3.2 -8.9 -3.2 -6.5 -6.0 -5.8 -9.9 -6.6 -10.1 -9.3 -8.7 -8.7 -8.2 -9.6 -10.5
max 26.1 27.7 28.4 28.8 31.0 17.8 22.2 21.1 19.5 21.5 13.0 17.5 15.1 17.3 16.5 12.5 12.6 13.2 13.0 13.1

Dcon_sw (µs)
avg 3.2 3.3 3.3 3.5 4.2 3.1 3.3 3.3 3.5 4.0 3.0 3.2 3.3 3.4 3.9 3.0 3.1 3.2 3.3 3.6
st.d 0.3 0.3 0.4 0.5 0.8 0.3 0.3 0.3 0.5 0.8 0.2 0.2 0.3 0.4 0.4 0.2 0.2 0.2 0.3 0.3
min 3.0 3.2 3.2 3.3 3.7 3.0 3.1 3.1 3.2 3.7 2.9 3.0 3.1 3.2 3.6 2.8 2.9 3.0 3.1 3.5
max 14.2 11.5 12.0 18.0 17.4 11.3 11.2 13.5 16.6 17.0 10.0 12.8 13.0 14.8 16.2 12.6 12.7 11.6 12.9 13.3

Dcon_dma (µs)
avg 13.5 20.6 33.9 61.0 115.0 13.5 20.6 34.0 61.0 115.0 13.1 20.0 33.1 60.3 114.2 12.9 19.5 32.9 60.0 114.1
st.d 0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.3 0.4 0.5 0.8 0.8 0.7 0.8 0.4 0.7 0.7 0.6 0.5
min 13.2 14.9 30.1 57.2 110.8 10.9 17.2 30.3 56.8 110.4 7.0 16.3 28.0 56.0 109.6 9.3 15.7 29.2 55.9 109.6
max 18.1 25.6 37.5 66.5 121.4 17.3 24.5 37.6 67.7 120.7 20.2 27.3 40.4 68.0 122.6 12.6 25.8 39.6 67.8 121.4

The in-controller processing time, Dcon was measured as the difference of TSC (Time Stamp
Counter) values logged at the time instants when the control task was activated and when
the EtherCAT frames had been transmitted. The time instant of frame transmission could be
determined from the TX_OK interrupt generated by the NIC [27]. It should be noted that
Dcon includes the cycle time deviation, which corresponds to the difference of the measured
time interval between two consecutive task activations from the intended cycle time. Table 3
summarizes the results. It shows the measured delays as we varied the cycle time, Tcycle and the
number of slaves, N . The measurement was performed for 30 minutes for each Tcycle, of which
collected data size amounts to 3,600,000 samples with Tcycle=0.5 ms, for instance.

The Drelay was measured using a Tektronix DPO3012 oscilloscope with a time resolution of
0.01 µs. We connected the probes to the frame interrupt pins of the EtherCAT switch hardware
in two adjacent slaves, and we measured the time difference of their trigger events for the same
EtherCAT frame. The measured Drelay turned out to be highly deterministic, having negligible
deviation: The average of Drelay was 0.59 µs, and the maximum and minimum were 0.61 µs
and 0.57 µs, respectively. We observed that Tcycle and N did not make any difference on Drelay.
Since we can assume that the backward frame transmission exhibits similar timing behavior as
the forward case, without loss of accuracy, we use Drelay for Dreturn as well. The Dreturn is
hence calculated as Dreturn = N ·Drelay. The jitter of the global clock was measured by reading
the system time difference register that is available in the EtherCAT switch hardware. This
register maintains the difference between the local clock and the reference clock in a nanosecond
resolution. The average, minimum, and maximum of the jitter were measured as -1 ns, -12 ns,
and 7 ns, respectively. For Dslv_in and Dslv_out, we used the constant values provided by the
manufacturer, which were 415 µs and 62.5 µs, respectively [25].

4.2 End-to-end Process Delay

Using the developed delay models together with the measurement results in the previous
sections, we evaluate the end-to-end delays. Figure 7 shows the end-to-end output delays at slave
N that experiences the largest delays. The graphs show the average, minimum, and maximum
of the output delays along with their major delay components. It can be seen that the average
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Figure 7: End-to-end output delays at slave N .

output delays increase linearly with the number of slaves. It is mainly due to the highly increased
Dcon. In contrast, the messaging delay, i.e., N · Drelay has a much lower effect on the end-to-
end delay, although it grows slightly as N increases. As shown in Table 3, for a large N , the
in-controller DMA time dominates Dcon and its linearly increasing feature directly affected the
overall end-to-end delays. In the figure, D∗

CO represents the minimum feasible delay in the clock-
driven output scheme under the requirement of Eq. (6). We can observe that D∗

CO is affected
mainly by the maximum of the delay components, i.e., Dcon, N · Drelay, and Dslv_out, out of
which Dcon again is the main cause of the increase in D∗

CO for growing N .

It can be seen that we have longer output delays for a larger cycle time. This is because Dcon

tends to increase as Tcycle gets larger. We also see that Dcon has a larger span with a longer
cycle. With DFO, this resulted in a noticeably larger deviation while, with D∗

CO, it was the main
reason of an increased average. This is shown clearly in Fig. 7(b) when compared with Fig. 7(a).
It should be noted that D∗

CO has a negligible deviation, being less than 0.1 µs throughout the
results, whereas the deviation of DFO is far larger, reaching up to 30 µs and 50 µs with the cycle
time of 0.5 ms and 4.0 ms, respectively. This reconfirms the strength of the clock-driven scheme,
which in our platform enabled a highly synchronized actuation among servo drives, having only
a few nanoseconds of standard deviation.

Based on the results, it could be estimated that the maximum N that is possible with the
experimental system for a cycle time of 0.5 ms would be around 32. It is because DFO(N) is
calculated to be 330 µs for N of 32, which leaves little time for the slave to prepare for the
next cycle. This is confirmed by our experimental experience, where we failed to maintain the
system in a stable state with 32 slaves. On the other hand, the experiment results with the
prototype controller indicate that the open source software can be a viable automation solution.
The controller could successfully operate tens of drives in position or velocity mode with a cycle
time of 0.5 ms.

Figure 8 shows the end-to-end input delays on the first slave that has inevitably the largest
delay among the slaves. The D∗

FI , the minimum possible input delay in the frame-driven scheme
is obtained when we maximize Tshift using Eq. (4). Thus, from Eq. (2) we can determine the
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Figure 8: End-to-end input delays at slave 1.

respective average, minimum, and maximum of D∗
FI(1) as

D∗ avg
FI (1) = (Dmax

con −Dmin
con )+N ·(Dmax

relay−Dmin
relay)+Dmax

slv_in+(N − 1) ·Davg
relay +Davg

return

≃ (Dmax
con −Dmin

con )+Dmax
slv_in+2N ·Davg

relay,

D∗ min
FI (1) = (N−1) ·Dmax

relay+Dmax
slv_in+Dmin

return

≃Dmax
slv_in+2N ·Davg

relay,

D∗ max
FI (1) = 2·(Dmax

con −Dmin
con )+2N ·Dmax

relay−(N+1)·Dmin
relay+Dmax

slv_in+Dmax
return

≃ 2·(Dmax
con −Dmin

con )+Dmax
slv_in+2N ·Davg

relay. (9)

In the equations, we used the approximation of Dreturn = N ·Drelay and Davg
relay = Dmin

relay = Dmax
relay.

The D∗
CI can be derived as follows. The jitter of the global clock is negligible, and hence we can

write Dclock + Tshift = Dmax
clock + Tshift, the maximum of which is given by Eq. (8). Thus, based

on Eq. (7), D∗
CI becomes

D∗
CI = Dcon+N ·Drelay+Dreturn−Dmin

con −Dmin
relay +Dmax

slv_in

≃ Dcon−Dmin
con +Dmax

slv_in+2N ·Davg
relay. (10)

We see from Fig. 8 that the frame-driven end-to-end input delay is affected by the deviation of
Dcon but not by the average. This contrasts with the output cases where the mean of Dcon has the
biggest impact on the delays. The backward message relay in EtherCAT is highly deterministic
and the slave-local input processing time is given as a constant; hence, it can be stated that it
is essential to minimize the frame jitter caused by the controller in order to reduce DFI .

It can be seen that D∗
CI outperforms D∗

FI in minimizing both the average and deviation of
the delays, whereas in the output processes, the clock-driven scheme produced a larger average
delay than the frame-driven. The use of clock events makes the delay dependent only on the
variance of the frame that carries the input data, thereby disengaging it from the effect of the
preceding frame. The frame-driven input, on the other hand, is affected by the variance of the
frame twice (see Eq. (2)). In our testbed system, the D∗

CI had a deviation of -16.0 ∼ 37.9 µs
while D∗

FI(1) had -37.2 ∼ 73.9 µs.
Observe that the input delays are relatively less affected by the number of slaves when

compared with the output delays. This is mainly due to the characteristics of Dcon, whose
deviation does not change much with varying N .
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Figure 9: Release jitter of control task (Jcon_task).

As shown in the evaluation results for the end-to-end delays, the performance of the EtherCAT-
based synchronized processes depends heavily on the delays by the controller. The measurement
results in Table 3 show that the controller delay Dcon tends to grow as we increase Tcycle. We
see that this mainly comes from the increased Jcon_task: the Jcon_task gets larger in line with
the increased Tcycle, whereas other in-controller delay components, Dcon_sw and Dcon_dma are
relatively unaffected by Tcycle. In Fig. 9, we plot the distributions of |Jcon_task|, i.e., the absolute
value of Jcon_task. It is shown that 99% of |Jcon_task| lies within 3.26 µs and 18.16 µs for Tcycle of
0.5 ms and 4 ms, respectively. It is considered that the cache pollution due to other background
tasks and kernel activities, such as for debug and monitoring, is enlarging the release jitter of
the real-time task.

On the other hand, the observed maximum Dcon was quite large, ranging from 109.5% to
171.5% of the average depending on the cycle time. As can be seen in Table 3, however, the low
95% and 99% range values are very close to the average, being far lower than the maximum. It
can be said that the frame release jitter of our system is statistically kept under a tolerable range
although it remains to be improved in case of relatively large control cycle.

5 Conclusion and Future Work

In this paper, we have addressed the performance analysis of EtherCAT control systems
in term of the end-to-end delay. On the basis of two types of cyclic events, i.e., the frame
and clock events, we explain the control schemes that enable synchronized input and output in
EtherCAT, and we formulate their end-to-end delays with the time for in-controller processing,
message delivery, and slave-local handling. Using the developed delay model, we discuss the
characteristics of EtherCAT synchronized processes for varying number of slaves and process
cycle time. For an in-depth and practical evaluation, the analyses have been conducted using a
real EtherCAT controller that was constructed from open source software.

The experiment results show that the controller has a crucial effect on the precision of the
networked control processes. We observed that the average end-to-end delay of output processes
is mainly increased by the average controller delay while the input processes are directly affected
by the deviation of the controller delay. It is shown that, with a larger number of slaves, the
in-controller DMA time primarily contributes to the increased average controller delay, whereas,
for a longer cycle time, the task release jitter tends to get larger and increases the controller delay.
It should be also noted that the use of a global clock event significantly reduces the deviation of
the end-to-end delay for both input and output processes.
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Aiming for a holistic delay analysis, we have dealt with the controller delay, mainly discussing
its average and deviation. In our future research, we will extend our analysis by studying the
probability model. Together with our already developed delay model for motor drives [4], it
will enable a delay-guaranteed synchronized control system, which is planned to be used for our
development of a sub-micron-level motion stage.
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