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Abstract: There is a growing concern to design intelligent controllers for autopilot-
ing unmanned surface vehicles as solution for many naval and civilian requirements.
Traditional autopilot’s performance declines due to the uncertainties in hydrodynam-
ics as a result of harsh sailing conditions and sea states. This paper reports the design
of a novel nonlinear model predictive controller (NMPC) based on convolutional neu-
ral network (CNN) and ant colony optimizer (ACO) which is superior to a linear
proportional integral-derivative counterpart. This combination helps the control sys-
tem to deal with model uncertainties with robustness. The results of simulation and
experiment demonstrate the proposed method is more efficient and more capable to
guide the vehicle through LOS waypoints particularly in the presence of large distur-
bances.
Keywords: USV, autopilot, predictive control, Convolution Neural Network (CNN),
Ant Colony Optimization (ACO), rolling optimization.

1 Introduction

In recent years, The application of USVs is ever increasing in the fields of oceanography [13]
[3], meteorology [7], military and commercial applications. Autopilot is a device for controlling
the heading of USV in a truly autonomous mode, which plays a key role in course-keeping for
USV [24]. When USV is working under harsh sea condition and high-risk environment, the
performance of traditional autopilot declines in the presence of time-varying ocean disturbances,
and measurement noises. A lot of autopilot designs for USV have been proposed to solve this
problem. Gao et al. proposed a fuzzy neural network controller based on chaos neural network
forecast model for the USV in complex sea condition [9, 15, 17]. An optimizing sliding mode
cascade control structure is proposed to determine the optimal sliding surface parameters for
sliding mode control of underactuated USV systems [18]. Further, nonlinear controller of USV
is designed by backstepping method [1, 10]. The fuzzy control approach is also applied to the
control of USV [8, 11, 19]. Li et al. proposed an adaptive radial basis function based on neural
network controller for the nonlinear control of USV which contains modeling errors and unknown
bounded environment disturbances [4]. However, it’s still an open problem that how to develop
effective method for robustness and high-precision steering of USV in extreme sea condition.

This paper reports a kind of autopilot based on convolutional neural network(CNN) and ant
colony optimizer. A NMPC based on CNN is used to compensate this predicted disturbance and
the ant colony algorithm is used to predict the disturbances. This approach helps the autopilot
to deal with model uncertainties and so on. The simulation and experiment results verified the
efficacy of the proposed method.

The rest paper is organized as follows: Section 2 states the specifications of the USV and
the problem formulation. Section 3 elaborates the autopilot design based on CNN and ACO.
Section 4 provides the simulation results and experiment results. Section 5 gives the conclusion
of this paper.

Copyright ©2018 CC BY-NC
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Figure 1: WH-01 USV

2 Problem formulation

Consider a robotic marine surface vehicle, called WH- 01 (as shown in Figure 1), whose spec-
ifications are listed in Table 1.The vehicle, designed in the control laboratory at WHUT(Wuhan
University of Technology), has a hydraulic jet propeller and one rudder driven by servo motors
for controlling its surge speed and heading. The maximum angular detection for rudder is ±35◦.
It is equipped with navigation sensors including Beidou, 3-axis magnetometer, 3-axis accelerom-
eter, and 3-axis rate gyro. The magnetometer and gyro are used to measure its yaw and yaw
rate during trails, respectively. In addition, a 4G communication module is installed to control
and monitor the vehicle from remote computer.

Table 1: SPECIFICATIONS OF WH-01 USV

Parameter Value
Length /m 8.075
Vertical length /m 8
draft depth /m 0.6
moulded depth/m 1.15
Full loaded displacement/T 3.2
Maximum speed /kn 12
Cruising speed /kn 6
Propulsion mode water jet propulsion

Because of the interference of wind, waves and currents, the steering model of USV is ex-
pressed as follows:

T1T2Ψ̈ + (T1 + T2)Ψ̇ + Ψ + aΨ3 = Kδ +KT3δ̇ + fa + fω + fl (1)

T1T2 = (m+ λ22)(Iz + λ66)/C (2)

T = T1 + T2 − T3 (3)

where Ψ is the heading angle of the USV, δ is the rudder angle of the USV , T is the turning lag
index, T1T2T3 is the second-order turning lag index, K is the turning ability index, m is the mass
of the USV, fa is equivalent disturbance rudder angle of the wind, fω is equivalent disturbance
rudder angle of the disturbances due to waves, fl is equivalent disturbance rudder angle of the
disturbances due to currents.
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Figure 2: A block diagram of the autopilot based on CNN and ACO for USV

According to the calculation method in the literature [6] and the Zigzag experimental data
of Ψ/δ = 15◦/15◦ for the draft state in the Taihu Lake, it can be obtained that:

K = 2.9097, T = 55.8855 (4)

Zigzag experimental result is shown in table 2.

Table 2: ZIGZAG EXPERIMENTAL DATA OF USV

Time /s Rudder angle /◦ Heading angle /◦ Remark
1′82 15 15 -

5′82 15 28.2 Maximum of
forward heading angle

9′44 -15 0 -

12′68 -15 -15 Maximum of
backward heading angle

15′62 15 -24.7 -

23′06 15 15 Maximum of
forward heading angle

26′56 -15 28.2 -

3 Robust adaptive autopilot

The autopilot design of USV is based on convolutional neural network(CNN) and ant colony
optimizer. Closed-loop state prediction and rolling horizon optimization are included in the
predictive controller. Particularly, The future dynamic trend is predicted by the NMPC based
on historical data of input and output. An ant colony algorithm acting as nonlinear optimizer
is used to improve the rolling horizon. The predictive value is corrected by negative feedback
and then compared with reference input. The difference between the predicted value and the
expected value is minimized in the next period of time. The proposed autopilot design is shown
in Figure 2.

3.1 CNN model

The architecture of CNN based model is shown in Figure 3. The delay lines with taps are
represented by TDL(Tapped Delay Line). The CNN is in parallel with the process of system.
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Figure 3: Architecture of CNN based model

The predictive error is used as training signal of the network. The single-step CNN’s prediction
model is defined as:

ym(k + 1) = f̂ [y(k), y(k − 1), · · · , y(k − n+ 1);u(k), u(k − 1), · · · , u(k −m+ 1)] (5)

where y(k) is the output of the heading angle at sampling time k, u(k) is the input of the heading
angle at sampling time k, m is the system input order, n is the system output order, f̂(·) is the
input and output mapping function of the CNN model, ym(k + 1) is the predictive value of the
heading angle.

Because the single-step neural network model has less predictive information, the multi-
step prediction method is used to improve the anti-interference and robustness of the autopilot.
The prediction model of single-step neural network is used to infer the multi-step one, which is
expressed as:

ym(k + p) = f̂ [y(k + p− 1), · · · , y(k + p− n);u(k + p− 1), · · · , u(k + p−m)] (6)

At sampling time k, y(k + p − 1), · · · , y(k + 1) is the actual output data of future, which
can’t be measured. So, the predictive value is used to replace the output of future. In addition,
the predicted data before the kth moment can be replaced by historical data. So, the p step
predictive model is formulated as:

ym(k + p) = f̂ [ym(k + p− 1), · · · , ym(k + p− n);u(k + p− 1), · · · , u(k + p−m)] (7)

The CNN model structure of multi-step prediction is shown in Figure 4.

Figure 4: Structure of multi-step neural network prediction

3.2 Feedback correction

The reference trajectory function of the autopilot is based on the reference trajectory provided
by the model control algorithm, which is expressed as:

yγ(k + 1) = ay(k) + (1− a)ω (8)
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Because the predictive controller has the model mismatch problem, a large deviation is pro-
duced between prediction model and actual output of the object. The predictive output should
be corrected to reduce the predictive error.

At sampling time k, we must calculate the error between the actual output value y(k) and
the output value predicted by the model(ym(k)) at first. Then, the controller adds the error
to the model predictive output(ym(k + 1)) to get the closed-loop predictive output. The future
closed-loop predictive output of p step is as follows:

ypj(k + j) = ym(k + j) + rjej(k) + βj [ej(k)− ej(k − 1)] (9)

where rj is the error correction coefficient, βj is the change rate of correction coefficient, ej(k) =
y(k)− ym(k) is the difference between actual output and the expected output, j = 1, 2, · · · , p is
the number of predictive steps, ypj(k + j) is the predictive value of the output component after
the (k+ j) moment, ypj(k+ j) is the model predictor of the output component at sampling time
(k + j).

3.3 Rolling optimization

Usually, the difference between the predictive value of heading and the expected value of
heading is supposed to be zero. The range of the control increment should not be too large. For
this reason, the optimal law of predictive controller is determined by the performance index. The
secondary performance indicator is used as the objective function. The optimal control objective
function is introduced by:

J =
1

2
{

s∑
j=1

P∑
i=1

qij [ypj(k + i)− yγj(k + j)]2

+

γ∑
j=1

M∑
i=1

λij [uj(k + i− 1)− uj(k + i− 2)]2}

(10)

where P is the length of predictive time domain, M is the length of time domain, M ≤ P ,
qj is the error weighting factor, λj is the control incremental weighting factor, yj(k + j) is the
reference trajectory of the output at k + j moment.

The ant colony optimizer(ACO) is used to maximize the objective function of the controller
within the range of rudder angle, which has good robustness and can be implemented in parallel.
The implementation steps of the ACO are enumerated below:

1. Initialize the ant pheromone distribution, set the number of iterations;

2. 10 ants are initialized in the neighborhood, moving according to the following transfer
probability. For each ant i, the objective function Ji is defined, the transfer probability for
ant i at time k is as follows:

pij(k) =
[τj(k)]1.2[4Jij(k)]2∑
r

[τr(k)]1.2[4Jir(k)]2
(11)

where τj(k) is the j-neighborhood attracting intensity of the ants at k time. 4Jij = Ji−Jj
is the difference value of the target function.

3. Calculate the objective function value of each ant, and record the optimal control sequence
in the current ant colony;
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4. Revise the intensity of pheromone according to the pheromone update equation, following
the next equation: {

τj(k + 1) = 0.7τj(k) +
∑
4τj

4τj = 1/Jj
(12)

5. Number of iterations N = N + 1

6. If the number of iterations does not reach the ending iteration number 100, the second
step is returned, otherwise, the loop is terminated and the optimal control sequence is
outputted.

4 Results and Discussion

4.1 Simulation results

The disturbance of wind and wave on USV is simulated using white noise and a second-order
wave transfer function [26]. The disturbance of ocean current is treated as a constant value.

y(s) = Kcω(s)
Kωs

s2 + 2ζω0s+ ω2
0

(13)

where ω(s) is a Gaussian white noise with a mean of zero, the value of power spectrum density
is 0.1, and Kc = 5 is a constant disturbance coefficient, ζ = 0.3 is a damp coefficient, Kω = 0.42
is the gain constant, ω0 = 0.606 is the frequency of the dominant wave.

In the case of wind, wave and current interference, when the setting heading angle is 15◦, the
effect of traditional controller and predictive controller simulated using matlab is shown in the
following figure.
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Figure 5: Heading using PID(Proportion Integration Differentiation) and the MPC

It is shown from Fig.5, Fig.6 that the predictive controller based on CNN has good control
accuracy, robustness and fault tolerance. Compared with the traditional model predictive control,
this controller’s stability has become stronger with external disturbances, which can realize the
stable path tracking with the characteristics of strong anti-interference. Finally, the problem of
model mismatch in conventional generalized predictive control is also solved by this proposed
method.
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Figure 6: Rudder angle using PID and the MPC

Table 3: Latitude and longitude of the target point

target number Coordinate
longitude latitude

1 120◦08′03.7′′E 31◦26′31.4′′N
2 120◦08′07.7′′E 31◦26′27.9′′N
3 120◦08′06.5′′E 31◦26′23.1′′N
4 120◦08′02.3′′E 31◦26′21.0′′N
5 120◦07′57.4′′E 31◦26′24.3′′N
6 120◦07′59.0′′E 31◦26′29.4q′′N

4.2 Experimental results

The predictive controller is applied to the WH-01, in which the course control experiment
was carried out in Taihu Lake, Wuxi, Jiangsu province. Six target points are selected for the
typical trajectory experiment in the lake, of which the latitude and longitude are shown in Table
2. The USV traveled at the average speed of 12 knot during the experiment.This simulation data
is derived from the average of three experimental data.

Fig.7 and Fig.8 show the waypoints follow by the USV by the predictive controller and the
PID scheme. Fig.9 and Fig.10 illustrate the distance of the vehicle from next waypoint and total
time taken to operate under the predictive controller and the PID scheme. Fig.11 and Fig.12
demonstrate mean average deviation of the waypoints by the predictive controller and the PID
scheme. It can be shown from Fig.7, Fig.8 and Table 4 that the USV can also pass through the
target points when disturbed by wind and waves. It is observed that the predictive controller is
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Figure 7: Waypoints followed by the Predictive controller systems
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Figure 8: Waypoints followed by the PID GC systems
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Figure 9: Distance of the vehicle from next waypoint and total time taken to operate by the
Predictive controller systems
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Figure 10: Distance of the vehicle from next waypoint and total time taken to operate by the
PID GC systems(guidance and control systems)

Table 4: Average performance measures of predictive control

Case
Number of

target points arriving

Total

distance(m)

rd

(m/s)

PID(Kp = 8, Ti = 8, Td = 0) 6 393.57 8.01

Predictive controller 6 347.98 4.23
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Figure 11: Mean average deviation of the waypoints by the Predictive controller systems
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Figure 12: Mean average deviation of the waypoints by the PID GC systems

more efficient and capable to control the USV tracking the target points especially in the case of
disturbances.

5 Conclusion

A predictive controller based on convolutional neural network(CNN) is designed for autopi-
loting an USV. It is shown from the experimental results that the predictive controller has good
robustness and anti-jamming. In extreme sea condition, the problem of control overshooting
and poor anti-interference is solved by the algorithm. In addition, the difficulty in hydrody-
namic modeling can be solved by the proposed approach. Finally, the feasibility of the method
is verified by numerical simulations and experiments on lake.

However, the steering mathematical model based on the CNN needs to be improved in the
future. Particularly, the training samples accumulated from the model experiment, the actual
ship test and expert knowledge need to be analyzed. In these conditions, it is difficult to build
the nonlinear steering law, which is worthy of further research.

The next work will be related to research the optimal strategy and design a new predictive
controller with good accuracy, adaptability and robustness. The influence of the designed pa-
rameters on the stability and other control performance can be analyzed in the system. The
robustness of the predictive control system can be researched when there has modeling error
and disturbance. Then, the different optimization strategies can be used to derive the different
controller structure. Therefore, a new rolling optimization strategy needs to be researched.
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